Thesis Proposal
Facilitating Collaboration in Building
Machine Learning Products

Nadia Nahar

Software and Societal Systems Department
School of Computer Science

Carnegie Mellon University

Thesis Committee:
Christian Késtner, Chair
James D. Herbsleb
Claire Le Gouse
Kenneth Holstein

Samir Passi

Submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in Software Engineering

May 2024

Abstract

In this proposal, I investigate the collaboration challenges between software engineers and
data scientists in building machine learning (ML) products, and propose interventions to
facilitate their collaboration by bridging the identified knowledge boundaries.

Despite significant advancements in ML algorithms and model development, integrating ML
models into operational products remains challenging, with collaboration issues frequently
cited as one of the major challenges. I identify collaboration challenges, and triangulate
them with existing domain knowledge through a qualitative interview study with industry
practitioners and a comprehensive meta-summary study of academic literature. I demonstrate
principles or ideas of how those collaboration problems can be solved, illustrated with three
interventions: (a) a novel approach for supporting data scientists and software engineers in
deriving actionable model requirements, which aims to bridge gaps during the requirements
elicitation process, (b) an innovative method to engage practitioners in responsible Al prac-
tices, fostering a culture of ethical awareness and compliance, and (c) a policy for guiding the
development of explainable Al, ensuring transparency and understandability of ML models
within products. These interventions are designed to address the syntactic, semantic, and
pragmatic knowledge boundaries that hinder effective teamwork in ML product development.
Lastly, I compile a comprehensive dataset of ML products from GitHub to further support
research and education in the domain. The methodological approach combines various
research techniques tailored to address the specific research questions in each study.

By systematically identifying and addressing collaboration challenges among practitioners,
this proposal aims to support the successful development and deployment of ML products in
real-world settings.

Table of contents

List of figures

List of tables

1

2

3

Introduction
1.1 Thesis Statement
1.2 Organization and Contributions

Background

2.1 Machine Learning (ML) Products
2.1.1 ML Models vs ML Products
2.1.2 How ML Challenges Traditional Software Development
2.1.3 Qualitiesof Concern

2.2 Collaboration
2.2.1 Knowledge Boundaries oo
2.2.2 Past Collaboration Success Stories: DevOps and MLOps
223 CollaborationwithML

Identifying Challenges

3.1 Identification A: Interview Study of Collaboration Challenges in Building
ML Products
3.1.1 Completed Work: Research Design
3.1.2 Findings for the Requirements Collaboration Point
3.1.3 Discussion

3.2 Identification B: Meta-Summary of Challenges in Building ML Products . .
3.2.1 Completed Work: Research Design
322 Findings
323 Discussion

33 Summary e e e e e

iv

W W =

O N 9

Table of contents iv
4 Designing Interventions 35
4.1 Intervention A: Supporting Elicitation of Model Requirements 38
4.1.1 Problem Scoping 39

4.1.2 Proposed Work: Research Design 39

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) .. 43
4.2.1 Problem Scoping and Related Work 44

4.2.2 Proposed Work: Research Design 45

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 51
43.1 RelatedWork 52

4.3.2 Ongoing Work: Research Design 52

4.4 Summary e e e 57

5 Setting Foundation for Future Research and Education 59
5.1 Completed Work: Research Design for Curating the Dataset 61
5.1.1 Search Spaceand Scope 62

5.1.2 SearchPipeline 62

5.1.3 Limitations and Threats to Validity 64

5.2 The Open-Source ML Product Dataset 64

5.3 Findings from a Qualitative and Quantitative Analysis 65

6 Conclusion and Proposed Timeline 66
References 67

List of figures

1.1

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

6.1

Overview of Thesis Contributions 2
Example of an ML Component within an ML Product 8
Structure of Two Interviewed Organizations 16
Identification A: Research Design 17
Identification B: Research Design 24
Targetted Problems Across Different Knowledge Boundaries 36
Interventions Facilitating Collaboration to Overcome Knowledge Boundaries 37
Intervention A: Proposed Approach 40
MLTE User Interface 41
Prompt Engineering Pipeline for Story Generation 46
Story Generation Matrix and an Example Story 48
Iterative and Collaborative Policy Design Process 53
Overall Process of ML Product Mining in GitHub 62

Thesis Timeline 66

List of tables

3.1
4.1
4.2

5.1

5.2

Overview of Identified Challenges

Summary of the Observations on Policy Design Exercise
Policy Draft from Week Seven and Notes Highlighting Improvements over
Prior Drafts

Sample ML Products for Analysis, from the Curated Dataset of 262 ML
Products: Mobile (P1-P10), Desktop (P11-P20), and Web Applications (P21-
P30) . . . e
Number of Retrieved Projects after Each Step

Chapter 1
Introduction

In this proposal, I study the collaboration challenges between software engineers and data
scientists in building machine learning (ML) products, and I propose interventions to facili-
tate collaboration between them using the concepts of boundary objects. Despite significant
advancements in machine learning and model development, building products with ML
components is still identified as challenging, with collaboration issues as one of the major
obstacles. Through qualitative interviews with practitioners, I uncover the specific collab-
oration challenges they face. Additionally, I conduct a qualitative meta-summary study of
the academic literature to collate the collective knowledge in this area. To support further
research and education, I also compile a dataset of ML products from GitHub and conduct a
preliminary analysis. Finally, I propose three interventions to facilitate collaboration: a novel
approach to support data scientists and software engineers in deriving model requirements, a
novel approach to engage practitioners in responsible Al, and a policy for guiding practition-
ers to build ML products with explainable AI'. Throughout this work, I deliberately select
and combine various research methods tailored to the research questions in each study.

The challenges of building products with ML components, which I refer to as ML products
in this proposal, are well-known and broadly discussed. Even though, in recent years, we
have made remarkable progress in both developing models (e.g., object detection and content
generation) and building products with such models (e.g., autonomous delivery robots and
cancer prognosis tools), practitioners still report struggling with the integration of models to
real-world products [119, 4, 98]. In fact, according to Gartner, an estimated 85% of machine
learning projects fail to transition from prototype to production [39, 154, 153, 37]. All these
anecdotal claims probe the researchers to systematically study the challenges in this domain
as well as design interventions to support the development of ML products.

I'This proposal is specifically targeted towards machine learning (ML), a subfield of Al but I also use the
term “AI” in case of established terminologies such as Responsible Al and Explainable Al

oo B 0006 g €@ Interview study Ch. 3.1: ICSE’22
‘- N oane 5 Ve
% |E© @ @@ @ Qualitative Meta-summary Ch. 3.2: CAIN’23
> —U o ,/,
Identifying Designing @& Tool for Requirements Elicitation | Ch. 4.1: Ongoing

Challenges Interventions O Tool for Responsible Al (RAI) Ch. 4.2: Ongoing
@ Policy for Explainable Al (XAl) Ch. 4.3: FAccT’24

6 + Ongoing
Infrastructure for Research and Education © Mining Github for ML Products

Fig. 1.1 Overview of Thesis Contributions

Thinking about the product beyond the model. A machine learning model, on its
own, cannot serve users, without being incorporated into a software product. While model
development is already challenging in itself, building an operational product with the model
is a much larger and complex process. This process involves many crucial steps, such as
collecting the right kind of data, designing and developing the non-ML components of the
software product that seamlessly integrates the ML model, implementing safeguards to
mitigate inevitable model mistakes, deploying and scaling the model to meet real-world
demands, continuously monitoring and updating the model and product to keep them fit for
purpose, securing user data against breaches, ensuring regulatory compliance, and considering
ethical and safety implications of model decisions to prevent adverse effects in real situations.
The complexity and diversity of these tasks go beyond the responsibilities and expertise
of data scientists and necessitate a collaborative effort of many other stakeholders such as
software engineers, operators, and project managers. Software engineers, in particular, play
a critical role in building the infrastructure that supports the model, integrating the model
within the product, adding safety features to counter any model errors, and scaling and
maintaining the model and the product under real-world conditions. This calls for a close
collaboration between data scientists, software engineers, and other relevant stakeholders to

effectively build and deploy appropriate machine learning solutions in real-world settings.

Collaboration is hard in ML product development. Collaboration in general is chal-
lenging, especially across disciplines among team members with different educational back-
grounds and experiences [28, 34], which is true for building ML products as well. Historically,
researchers have made significant progress in enhancing collaboration in traditional soft-
ware development, with practices such as DevOps [29, 60] and the Security Development
Lifecycle (SDL) [138, 35] to improve teamwork and establish a culture of collaboration
between developers, operations teams, and security experts. Yet, the development of ML
products introduces additional hurdles for teamwork, due to the nature and novelty of ML

and the processes involved in its integration, deployment, and maintenance [149, 101], as

1.1 Thesis Statement 3

I will explore. The iterative, experimental, and data-driven approach to ML development
requires continuous communication and adaptability. It also raises unique syntactic, semantic
and pragmatic knowledge boundaries [22, 23] and related challenges, particularly between
software engineers, who are used to more predictable workflows, and data scientists, who
are engaged in the exploratory development of models. These differences may result in
difficulties in understanding each other’s perspectives, and work processes, and in integrating
their efforts, as I will show. Furthermore, ML heavily depends on the quality and quantity
of data, necessitating close collaboration between data scientists, who train models with
the data, domain experts, who understand the data, and data engineers, who manage and
preprocess the data. Additionally, ML models are not simply set up once and left alone;
they need to be continually updated to accommodate new data or to handle model drift,
requiring ongoing collaboration between ML engineers and operations teams. While some
progress has been made in addressing these issues, such as the introduction of MLOps
[58] to facilitate effective teamwork between the data scientists and operations teams, the
collaboration between data scientists and software engineers, who are the main stakeholders
in developing the ML product, still needs attention.

This leads to my proposal, where I am particularly interested in facilitating the col-
laboration between data scientists and software engineers in building machine learning

products.

1.1 Thesis Statement

Building a machine-learning product that integrates one or more machine-learning
models and serves the needs of the end-users and other stakeholders, relies heavily on
effective collaboration among team members with different backgrounds.

In this thesis, (a) I identify collaboration points and corresponding challenges primar-
ily between software engineers, data scientists, and other members of the development
team. Then, (b) I propose interventions to promote effective collaboration among these

development team members.

1.2 Organization and Contributions

My research contributions are organized into three primary thrusts, as depicted in Figure 1.1.
In the first thrust, I identify the collaboration challenges in building ML products. Then

based on the identified challenges, in the second thrust, I design interventions to facilitate

1.2 Organization and Contributions 4

better collaboration. In the last thrust, I work on developing infrastructure to support future
research and education.

I have conducted two studies in the first thrust (Chapter 3, denoted by) to identify the
collaboration points and the challenges reported by the industry practitioners and examined
within the academic literature. The findings from these studies highlight that many challenges
arise at the interface or boundary between teams or distinct roles. We report the three major
collaboration points that practitioners consistently report as challenging. We also triangulate
the challenges with findings from existing literature.

The identified challenges demonstrate problems at different knowledge boundaries,
namely, syntactic, semantic, and pragmatic [23], and thus, to demonstrate how collaboration
can be improved at these boundaries by transferring, translating, and transforming knowl-
edge, we develop three interventions, as outlined in the second thrust (Chapter 4, indicated
by €3). Each of these interventions addresses fundamental gaps in communication and
collaboration, as mentioned below:

* My first intervention facilitates the elicitation of actionable model requirements and
filling out negotiation cards, which is a boundary object [159, 22] for model require-
ments agreement among the development team members. This intervention primarily
aims to overcome semantic boundaries and the tensions in requirements elicitation
[143, 105] for ML products, by bridging the gap between the model team, primarily
composed of data scientists, and the product team, which typically includes software
engineers and project managers. The proposed solution aims to facilitate effective
negotiations between the two parties by assisting each group in identifying viable and
actionable model requirements as well as avoiding unrealistic and vague requirements.

* My second intervention is tailored to encourage data scientists to engage with the
principles of responsible Al. It addresses the pragmatic boundary by resolving tensions
that arise when data scientists feel resistant or indifferent to the importance of ethical
considerations in developing ML products. By promoting awareness and acceptance,
this initiative may help align the values and practices of data scientists with broader
organizational goals.

* Finally, aimed at bridging syntactic, semantic, and pragmatic boundaries, my third
intervention involves establishing a policy for explainable Al. This policy serves as a
boundary object that fosters common ground among data scientists, software engineers,
governance people, and other relevant team members. By clarifying expectations and
responsibilities, it may support all parties to have a unified approach toward ensuring
explainability in ML products.

1.2 Organization and Contributions 5

In the third and final thrust of my research, I focus on infrastructure development (Chapter

5, €3), intending to address the challenge of lack of access to ML products for academic

research. To provide a resource that can be leveraged for both research and educational

purposes, I offer a dataset of 262 open-source ML products and report initial findings and
implications.
The summary of these contributions is as follows:
« NV A list of key collaboration challenges from industry practitioners (Section 3.1).
Through a qualitative interview study with 45 practitioners from 28 organizations, we>
identify key collaboration challenges that teams face when building and deploying ML
products. We report on common collaboration points in ML product development for
requirements, data, and model-product integration, as well as corresponding challenges
based on the different team structures and workflow.

« NV A catalog of the challenges of developing ML products from academic liter-
ature (Section 3.2). We conduct a meta-summary study by reviewing 50 academic
papers to understand different challenges in developing ML products, based on inter-
views and surveys with over 4,758 industry practitioners. By categorizing over 500
challenges mentioned, this study highlights the key obstacles faced, serving as a useful
resource for guiding research and education in this field.

* £-2 A novel approach and a corresponding tool to support model requirements
elicitation (Section 4.1). We aim to advance the process of negotiating model require-
ments, with a focus on assessing model qualities, by leveraging the existing Machine
Learning Test and Evaluation (MLTE) framework [78], and one of its components—
negotiation cards. The MLTE framework serves as a roadmap for organizations,
guiding them through a comprehensive evaluation of model qualities to ascertain their
alignment with defined product and model requirements. Within this process, the
negotiation cards act as a boundary object to document and share the agreed-upon
requirements among the team members. Our objective is to assist the development
team members such as data scientists and software engineers in identifying actionable
and feasible model requirements specific to the product use cases. For this, we plan to
integrate a generative Al pipeline as a component within the MLTE to support the data
scientists in identifying relevant model requirements tailored to the specific context
of the product, as well as ask the right questions to software engineers and project
managers, which would help the data scientists to negotiate and reach consensus on
model specifications. The pipeline will also assist software engineers in formulating

realistic model requirements that align with the expected model capabilities.

’I use “we” instead of “I”” in the rest of the proposal

1.2 Organization and Contributions 6

* £~ A novel approach and a corresponding tool for responsible AI engagement and
collaboration (Section 4.2). To encourage data scientists and software engineers to
engage with responsible Al practices and comprehend the potential harm ML products
can inflict on end-users, we have devised a strategy that involves generating stories
of harm using large language models (LLMs). This approach is underpinned by a
long pipeline, designed to ensure the stories produced are concrete, severe, surprising,
and diverse. Our next steps include an experimental evaluation of the pipeline’s
effectiveness and efficiency, alongside conducting a user study to gauge its impact and
usefulness.

« t-3 Policy design insights and recommendations for explainability in ML products
(Section 4.3). To develop practical guidance on explainability for data scientists and
software engineers, we, first, conduct an experimental study alongside an interdis-
ciplinary team of Al and policy researchers to design a policy for Al explainability
that is clearer, more actionable, and enforceable than existing guidelines. Moving
forward, we aim to assess this policy through a large-scale controlled experiment
within an educational setting. For this purpose, we have randomly assigned one of six
different policy document combinations to 140 students as part of an 8-hour homework
assignment. Following this, we plan to perform qualitative content analysis to evaluate
the explanations and evidence submitted by the students.

« Q2 A dataset of open-source ML products and development insights (Section
5). To address the limited access problem of academics in accessing commercial ML
products for research purposes, we identify 262 open-source ML products on GitHub
and conduct qualitative and quantitative analyses on 30 of those. Findings related to
collaboration include rare explicit assignment of team responsibilities and unusually
low modularity between ML and non-ML code.

Chapter 2
Background

This chapter aims to provide the foundational knowledge necessary for understanding the
subsequent discussions in this proposal. We will delve into the key concepts surrounding
machine learning (ML) products, including their development process and various qualities
of concern. Additionally, given that our proposal concentrates on collaboration challenges,
we will explore various facets of collaborative efforts within this context.

2.1 Machine Learning (ML) Products

Researchers and practitioners have gradually recognized that integrating ML into products
extends beyond merely developing a model. It involves substantial effort to integrate the
model into a product, while considering aspects such as system architecture, requirements,
UX design, safety and security, system testing, and operations. As this proposal focuses on
the development of ML products rather than just ML models or components, in this section,
first, we define ML products, and then, delve into the nuances of developing ML products in

comparison to traditional software products.

2.1.1 ML Models vs ML Products

While an ML model is a standalone algorithm trained on data to make predictions or decisions,
an ML product encompasses the entire application that leverages this model as a component.
For instance, consider an object detection model integrated into a photo gallery application
(as depicted in Fig. 2.1). The development of this ML product involves not just creating
the object detection model in a Jupyter notebook but also integrating it with various other

components such as user interfaces for tagging objects within photos, designing the system

2.1 Machine Learning (ML) Products 8

architecture to support real-time detection via cloud processing, and setting up data pipelines

for continuous model updates.

(©) Object detection o share @
File Edit View Insert Runtime Tools Help Cannotsave changes

o + Code + Text # Copy to Drive F;?x v /" Editing

Q [5] module handle = "https://tfhub.dev/google module_handle: https:/tfhub.dev/google/fasy

® detector = hub.load(module_handle).signat

- /7 7’
IR , -
Photo Gallery Applicatiog \ , .
/ 7
' \ Ve 7’
User Interface \ \ , P
\ , . 7’
3 7
P
User Photo Pay- \ . .
Mgmt. Upload ment { Object Detection
Database Cloud Processing Ig;?ngg il\r/]lgnltor-

Fig. 2.1 Example of an ML Component within an ML Product

However, we observe that the terminology in this field is inconsistent, with researchers
and practitioners using terms such as ML systems, ML projects, or ML applications inter-
changeably to refer to the libraries that train models (e.g., Tensorflow), the code to train
models (e.g., in a notebook), the deployed models (e.g., GPT-3), or the products around those
models (e.g., FaceSwap). Our concept of an ML product encompasses the entire software
system, including both ML and non-ML components, in line with past research that used
terms like ML-enabled systems [142, 88], or ML systems [128, 68]. Thus, to eliminate any
ambiguity in this proposal, we define the term ML product in this section.

A key way to distinguish an ML product from other ML projects (e.g., experimental
notebooks, toy projects, and libraries) is its focus on an end-user base. When an ML prototype
is converted into a released product, it may be designed to be more professional and user-
friendly to attract and retain end-users. Such products often feature a polished interface and
comprehensive user manuals, enabling non-technical users to install and use the software
without needing to execute terminal commands or library installations (e.g., ‘pip install ...").
Considering these essential characteristics of a software product with ML components, we

define ML product as follows:

2.1 Machine Learning (ML) Products 9

A machine-learning product is a software project (a) for end-users that (b) contains one
or more machine-learning components.

To be considered for end-users, the project must have a clear purpose and a clear
target audience. The purpose can be fun and the audience can be “everybody.” The
software must be complete, usable, polished, and documented (e.g., install and usage
instructions) to the level typically expected by the target audience. The product needs
to use at least one machine-learned model that is used for major or minor functionality
of the software. The model can be developed from scratch or called using an existing
library or API.

For contrasting, we define ML library and ML project:

ML Library: Libraries, frameworks, or APIs that are used to perform ML tasks, such as

TensorFlow and Scikit-learn.

ML Project: ML Project represents any software project that integrates some form of ML
functionality or code. Examples include notebooks, research artifacts associated with a paper,
and course homework. All ML products are ML projects, but most ML projects are not ML
products.

2.1.2 How ML Challenges Traditional Software Development

Many studies have shown that incorporating ML models in software products impacts
traditional software development in many different ways [149, 31]. The requirements and
specifications get impacted because of the uncertainties associated with ML development,
lack of Al literacy in stakeholders, difficulties in identifying business goals and metrics,
accuracy vs other qualities of the product, and so on [143, 105]. Similarly, ML impacts
the ways systems are architectured and designed, challenging the concept of modularity,
introducing additional complexity for designing data, models, and pipelines, and adding new
design qualities like monitorability, and so on [125, 150, 68]. The quality assurance of ML
products is also more complicated than traditional software — the concept of correctness is
challenged by the accuracy metrics of the ML models, defining the model adequacy goal is
difficult, online monitoring is a necessity, and so on [19, 128, 94]. Apart from mere model
performance or accuracy, ML also calls for evaluating different system/product qualities such
as fairness, explainability, safety, security, and so on [47, 108, 120, 81, 116, 14]. Additionally,

unlike traditional software products, data is an integral part of ML components, leading

2.1 Machine Learning (ML) Products 10

to a lot of challenges related to data quality, data accessibility, data understanding, data
management, and so on [117, 102, 16, 55].

Along with all the additional technical challenges in each of the development stages, ML
also raises many organizational and cultural issues. Team collaboration becomes problematic
with data scientists in the teams due to differences in working style, vocabulary, code quality,
and so on [101, 62, 88]. Organizational resource constraints restrict ML practitioners from
achieving the model qualities they plan to provide [48, 6, 9]. The need for diverse skills in
development teams requires additional training and education for both software engineers
and data scientists [62, 146, 88]. The challenges and need for documentation of the model,
data, and system are other aspects that many recent papers have pointed out and worked on
[16, 8, 84], but we are still lacking standardization [24]. On top of all, we still do not have a
good process to integrate the data science pipeline with the software development lifecycle
[42, 80, 135].

To systematically study these challenges that occur during the development of ML
products, as mentioned in the literature, we conduct a meta-summary study as part of our

challenge identification chapter.

2.1.3 Qualities of Concern

For the successful development of ML products, practitioners must consider two distinct types
of quality attributes: model quality and product quality. While model quality focuses on the
technical performance of the ML model or algorithm such as accuracy and robustness, product
quality addresses the end-to-end experience and functionality of the complete software
product such as usability and interface design. The incorporation of ML in a product urges
us to reconsider how we view various product qualities, such as privacy, due to its reliance
on large datasets, and safety, considering the unpredictability of model behavior. These
qualities are vital and demand collaborative efforts from various stakeholders. In two of the
interventions in my proposal, I focus on facilitating collaboration for such product qualities:
one is broadly for responsible Al (RAI), and the other is specifically for explainable Al
(XAI). For readers less familiar with these areas, I offer a brief introduction to both concepts

in this section.

Responsible AI (RAI). Responsible Al is a broad term, which refers to the practice of
designing, developing, and deploying artificial intelligence (AI) with ethical considerations
in mind [30, 148]. It encompasses ensuring that Al and ML products are fair, transparent,
and accountable. This means that the ML products should be free from biases, respect

privacy, demonstrate reliability, and have safeguards in place to prevent misuse. RAl is a

N Cf. §3.2
for the litera-
ture findings

2.2 Collaboration 11

product quality, which involves considering the societal impacts and ensuring that the product
encompassing the ML model contributes positively to the human experience rather than
causing harm. In short, it is about taking a holistic approach to building AI/ML products that
prioritizes ethical standards and the well-being of stakeholders affected by it.

Explainable AI (XAI). Explainable Al is a specific quality within the broader Responsible
Al (RAI) framework that aims to make decisions and operations of AI/ML products transpar-
ent and comprehensible to humans [12, 1]. Its objective is to develop AI/ML products that
provide clear and understandable explanations for the model predictions, decisions, or actions.
This becomes particularly crucial for complex and opaque models, such as deep learning
models, where it is not always evident how the model arrived at a particular conclusion.
XALI enables users and stakeholders to understand the reasoning behind the product’s
decisions, which can be essential in sensitive applications such as healthcare, finance, and
law enforcement. Furthermore, it assists in validating that the ML product functions correctly
and supports the identification and rectification of model errors. Overall, explainable Al
seeks to bridge the gap between human decision-making and ML outcomes, ensuring that
we can leverage the model’s power while maintaining control, understanding, and ethical

oversight.

2.2 Collaboration

Given that our proposal focuses on collaboration challenges, this section will explore various
aspects of collaboration. We start with a brief discussion of knowledge boundaries—the
limits of understanding between different individuals or groups within a collaborative setting.
We will also discuss the past successes of DevOps and MLOps as models of effective
collaboration from which we can draw inspiration. Finally, we will briefly contextualize

collaboration specifically for the development of ML products.

2.2.1 Knowledge Boundaries

Knowledge boundaries [22, 23] refer to the division that exists when different groups or
individuals have distinct bases of knowledge, which can lead to challenges in communication
and collaboration. These boundaries often emerge from differences in expertise, professional
background, or disciplinary focus, and can manifest as gaps in understanding or misinterpreta-

tions when exchanging information. Addressing knowledge boundaries involves developing

2.2 Collaboration 12

shared languages, creating boundary objects, and fostering environments that promote mutual
learning and understanding across different knowledge domains.

There are three categories of knowledge boundary. Syntactic boundary is the most
basic level of knowledge boundary that refers to the communication barriers among team
members due to differences in technical language and terminologies. For instance, the
term “performance” means prediction accuracy to the data scientists, but traditionally refers
to response time for software engineers. Overcoming this boundary requires transferring
knowledge by creating common vocabularies or standardized codes that all team members
can understand.

Semantic boundary involves deeper levels of misunderstanding where team members
interpret the same information differently due to varying backgrounds or expertise. For ex-
ample, a developer and a designer might have different interpretations of what “user-friendly”
means in the context of the software. Bridging this boundary may involve translating
knowledge using a boundary object such as a UX mockup, which serves both as a guide for
designers in visualizing user interactions and as a blueprint for developers to understand and
implement the necessary functionalities.

Pragmatic boundary is the most complex boundary, which focuses on the differences in
interests and values that influence decision-making or practices. At this boundary, each party
might recognize the other’s differences but still not value it sufficiently to motivate change
in their practices or beliefs. For instance, while developers may push for rapid delivery of
new features, operators might prioritize product stability, leading to conflicting priorities.
Overcoming this boundary requires transforming knowledge by establishing new shared
practices or frameworks that respect and integrate diverse perspectives and goals. An example
of such an integration is DevOps, which merges development and operations disciplines into

a cohesive process with common goals and practices.

2.2.2 Past Collaboration Success Stories: DevOps and MLOps

Conflicts between teams with varying roles and goals are a commonplace issue in software
development. Within the software engineering community, approaches such as DevOps
and MLOps have been extensively explored to enhance teamwork between developers and
operators, and similarly between data scientists and operators. These methodologies not only
address the needs of tooling and operational designs but also provide a robust framework for
fostering interdisciplinary collaboration, which we may take some inspiration from.
DevOps and MLOps promote a culture of collaboration where traditional conflicts
between developers—who typically focus on rapid feature development—and operators—
who aim for stability and cost-effectiveness—are transformed into cooperative partnerships.

2.2 Collaboration 13

By sharing tools, vocabulary, and responsibilities, these approaches successfully merge
distinct workflows into a cohesive operation. For instance, development and operations
teams jointly use tools such as containers for software deployment, which allows both
immediate application in production environments and real-time monitoring, thus aligning
their objectives.

Furthermore, these methodologies stress the significance of a shared understanding and
mutual benefits, breaking down silos and encouraging a culture that values joint accountability
and continuous feedback. This reformed workflow enables developers to seamlessly integrate
testing, deploy faster, and adjust based on real user feedback, while operators gain efficiencies
in managing infrastructure more reliably and dynamically.

However, adopting such transformative approaches is not only about adopting new tools
and methods. It requires both cultural change within a company and education about these
principles. Looking beyond DevOps and MLOps, these principles offer valuable lessons for
interdisciplinary collaborations. Whether between data scientists and software engineers or
other diverse teams, the emphasis remains on fostering joint goals and leveraging shared tools
to facilitate collaboration. The narratives within DevOps and MLOps serve as a testament to
what can be achieved when collaboration and mutual understanding take precedence over
traditional role-defined boundaries. Such success stories provide compelling examples for
other sectors and fields aiming to nurture a collaborative culture and achieve collective goals

efficiently.

2.2.3 Collaboration with ML

Collaboration in ML is crucial due to the inherently interdisciplinary nature of the field,
requiring expertise in data science, software engineering, and domain-specific knowledge to
provide contextual understanding. In contrast to traditional software development, where
projects typically revolve around well-defined requirements, project plans, and determin-
istic outputs, ML products often operate in environments with inherent uncertainties and
probabilistic outcomes, where data quality, model selection, and hyperparameter tuning can
significantly affect the results, and influence the project’s progress, timeline, and overall
success.

In traditional software development, teams usually follow a structured process with
clear milestones and a predictable path, with well-defined stages such as planning, design,
development, testing, and deployment, allowing relatively straightforward progress and
timelines easier to estimate. However, in ML product development, the collaborative process
is inherently more dynamic and iterative. Data scientists, software engineers, and subject

matter experts must work closely together to continually adapt and refine their models based

2.2 Collaboration 14

on ongoing feedback and evolving data. This iterative experimentation process necessitates
frequent adjustments and reiterations, often requiring quick pivots and problem-solving
across multiple disciplines. Effective collaboration, therefore, becomes essential to integrate
these diverse skills and navigate the complexities of ML products.

Chapter 3
Identifying Challenges

In this chapter, I present two key studies that lay the foundation for my proposal. The
objective behind these studies was to gain a deep understanding of the obstacles to effective
collaboration, which is essential to support stakeholders throughout this process of ML
product development—this marks the initial phase (W) of my thesis work: “In this thesis,
(a) I identify collaboration points and corresponding challenges primarily between software
engineers, data scientists, and other members of the development team”.

In the first study, I delve into the collaboration challenges faced by industry practi-
tioners through a qualitative interview study. This approach allowed me to gather rich,
firsthand insights into the complex dynamics and challenges that professionals encounter
when collaborating on ML products.

For the second study, my focus shifts to synthesizing existing knowledge in the academic
field by conducting a qualitative meta-summary study. This involves analyzing existing litera-
ture to consolidate and interpret the collective knowledge regarding ML product development
challenges in the field, offering a broader perspective on the issue.

3.1 Identification A: Interview Study of Collaboration Chal-
lenges in Building ML Products

This section is a strongly shortened version of the ICSE’22 paper [88]: "Collab-
oration Challenges in Building ML-enabled Systems: Communication, Docu-

mentation, Engineering, and Process" [Nahar et al., 2022]

To better understand collaboration challenges and avenues toward better practices, we
conducted interviews with 45 participants contributing to the development of ML products

(i.e., not pure data analytics/early prototypes). Our research question is: What are the

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 16

collaboration points and corresponding challenges between data scientists and software
engineers? Participants come from 28 organizations, from small startups to large big tech
companies, and have diverse roles in these projects, including data scientists, software
engineers, and managers. During our interviews, we explored organizational structures (e.g.,
see Fig. 3.1), interactions of project members with different technical backgrounds, and

where conflicts arise between teams.

Organization 3 Organization 7
Govmt. Integr. Product & Model Team Product Team Model Team
client ® . . o
P3a
o |2 el al el -
P3c P3b | (3] (1)
9 JEz inference B8 ML pipeline 9‘
2] . 0. 0 .
o S &t atad)
monitor.
€ Prod. requirements @}API, implicit feedback €} Online data € Model req. €3 Training data EpModel API
D Team Inner groups [l Responsibility) Data (@} Collab. point Be Softw. Eng. &l Data Scientist 9 End user

Fig. 3.1 Structure of Two Interviewed Organizations

Three collaboration points seemed particularly challenging: (a) identifying and decom-
posing requirements, (b) negotiating training data quality and quantity, and (c) integrating
data science and software engineering work. To keep the proposal concise and focused, we
only discuss results from the first collaboration point, particularly given that the challenges
from the other collaboration point are not central to the subsequent chapters. For a more

detailed understanding, we encourage interested readers to consult the full paper.

3.1.1 Completed Work: Research Design

Due to limited research on collaboration in building ML products, we adopt a qualitative
research strategy to explore collaboration points and corresponding challenges, primarily with
stakeholder interviews. We proceeded in three steps, as depicted in Fig. 3.2: (1) Prepared
interviews based on an initial literature review, (2) conducted interviews, and (3) triangulated
results with literature findings. We base our research design on Straussian Grounded Theory
[133, 132], which derives research questions from literature, analyzes interviews with open

and axial coding, and consults literature throughout the process.

Step 1: Scoping and interview guide. To scope our research and prepare for interviews, we
looked for collaboration problems mentioned in the existing literature on software engineering

for ML products. In this phase, we selected 15 papers opportunistically through keyword

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 17

A @
. '\ Literature
Analysis

Limited Literature &

&€ Snowballing
‘ |—> Axial Coding and
Memoing Papers
Initial Literature ‘ O .
=|| Coding
2
Open Coding \
Y\

The_ory
Axial Coding Codebook and (53
L+ Define Codebook open-ended RQs / ©:5<@® Semi-structured \

Development
| T ‘ ‘ ll.n. rl Interviews
()

juswauyel

5 . :
Define Interview

e, ;
7 / Guide \

Participant Comp.are
Selection and Validate

Transcribe Visual Cc_)de
Axial Coding ~Analysis

and Memoing 7
Interviews

Fig. 3.2 Identification A: Research Design

search and our knowledge of the field. We marked all sections in those papers that potentially
relate to collaboration challenges between team members with different skills or educational
backgrounds, following a standard open coding process [133]. Even though most papers did
not talk about problems in terms of collaboration, we marked discussions that may plausibly
relate to collaboration, such as data quality issues between teams. We then analyzed and
condensed these codes into nine initial collaboration areas and developed an initial codebook

and interview guide.

Step 2: Interviews. We conducted semi-structured interviews with 45 participants from 28
organizations, usually 30 to 60 minutes long. All participants are involved in professional
software projects that use ML and that are either already deployed in production or have a
concrete plan for deployment.

We tried to sample participants purposefully (maximum variation sampling [44]) to cover
participants in different roles, types of companies, and countries. We intentionally recruited
most participants from organizations outside of big tech companies, as they represent the
vast majority of projects that have recently adopted ML and often face substantially different
challenges [49] (21.4% big tech, 39.3% mid-size tech, 17.9% startups, 14.3% non-IT, and

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 18

7.1% consulting). Among the 45 participants, their roles related to machine learning (51%),
software engineering (20%), management (11%), and others. Where possible, we tried to
interview multiple participants in different roles within the same organization to get different
perspectives. For confidentiality, we refer to organizations by number and to participants by
PXy where X refers to the organization number and y distinguishes participants in the same
organization.

We transcribed and analyzed all interviews. Then, to map challenges to collaboration
points, we created visualizations of organizational structure and responsibilities in each
organization (we show two examples in Fig. 3.1) and mapped collaboration problems men-
tioned in the interviews to collaboration points within these visualizations. We used these
visualizations to further organize our data; in particular, we explored whether collaboration

problems are associated with certain types of organizational structures.

Step 3: Triangulation with literature. As we gained insights from interviews, we returned
to the literature to identify related discussions and possible solutions (even if not originally
framed in terms of collaboration) to triangulate our interview results. We pursued a best-effort
approach that relied on keyword search for topics that surfaced in the interviews, as well as
backward and forward snowballing. Out of over 300 papers read, we identified 61 as possibly
relevant and coded them with the same evolving codebook.

Threats to validity and credibility. Our work exhibits the typical threats common and
expected for this kind of qualitative research. Generalizations beyond the sampled participant
distribution should be made with care; for example, we interviewed few managers, no
dedicated data experts, and no clients. In several organizations, we were only able to
interview a single person, giving us a one-sided perspective. Observations may be different in
organizations in specific domains or geographic regions not well represented in our data. Self-
selection of participants may influence results; for example, developers in government-related

projects more frequently declined interview requests.

3.1.2 Findings for the Requirements Collaboration Point

Through our interviews we identified three central collaboration points where organizations
building ML products face substantial challenges: (1) requirements and project planning, (2)
training data, and (3) product-model integration. In this section, we delve into the results
from the requirements collaboration point, as they are essential for understanding the content
of the subsequent chapters.

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 19

In an idealized top-down process, one would first solicit product requirements and
then plan and design the product by dividing work into components (ML and non-ML),
deriving each component’s requirements/specifications from the product requirements. In
this process, the product team needs to negotiate product requirements with clients and other
stakeholders, and plan and design product decomposition, negotiating with component teams

the requirements for individual components (e.g., specific model requirments).

Common Development Trajectories There are distinct patterns relating to how organiza-
tions elicit requirements and decompose their systems. Most importantly, we see differences
in terms of the order in which teams identify product and model requirements:

Model-first trajectory: 14 of the 28 organizations (3, 5, 10, 14-17, 19, 20, 22, 23, 25—
27) focus on building the model first, and build a product around the model later. In these
organizations, product requirements are usually shaped by model capabilities after the (initial)
model has been created, rather than being defined upfront. In organizations with separate
model and product teams, the model team typically starts the project and the product team

joins later to build a product around the model.

Product-first trajectory: In 12 organizations (1, 4, 7-9, 11-13, 18, 21, 24, 28), models are
built later to support an existing product. In these cases, a product often already exists and
product requirements are collected for how to extend the product with new ML-supported
functionality. Here, the model requirements are derived from the product requirements and

often include constraints on model qualities, such as latency, memory, and explainability.

Parallel trajectory: Two organizations (2, 6) follow no clear temporal order; model and

product teams work in parallel in close collaboration.

Challenges of Eliciting Product and Model Requirements We found a constant tension
between product and model requirements in our interviews.

Product requirements require input from the model team (*&%, [7J). While more orga-
nizations follow a model-first trajectory, organizations that follow a product-first trajectory
also report requirements challenges regarding ML capabilities. A common theme in the
interviews is that it is difficult to elicit product requirements without a good understanding of
ML capabilities, which almost always requires involving the model team and potentially per-
forming some initial modeling when eliciting product requirements. Regardless of whether

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 20

product requirements or model requirements are elicited first (product-first trajectories) or a
model team focuses on a model first without a full understanding of the product (model-first
trajectory), data scientists often mentioned unrealistic expectations of model capabilities
of the model from both the client and the product development team. For example, P26a
shared “For this particular project, [the project manager] wanted to claim that we have no
false positives and I was like, well, that’s not gonna work.” Usually, the product team cannot
identify product requirements alone, instead, product and model teams need to interact to
explore what is achievable.

In organizations with a model-first trajectory, members of the model team sometimes

engage directly with clients (and also report having to educate them about ML capabilities).

However, when requirements elicitation is left to the model team, members tend to focus on
requirements relevant for the model, but neglect (or do not document) requirements for the
product, such as expectations for usability. O’Leary and Uchida raise similar concerns about

model-centric development where product requirements are not obvious at modeling time
[95].

Model development without clear model requirements is common . Participants
from model teams frequently explain how they are expected to work independently, but
are given sparse model requirements. They try to infer intentions behind them, but are
constrained by having a limited understanding of the product that the model will eventually
support. Especially in organizations following the model-first trajectory, model teams may
receive some data and a goal to predict something with high accuracy, but no further context,
e.g., P3a shared “there isn’t always an actual spec of exactly what data they have, what
data they think they’re going to have and what they want the model to do.” Several papers
similarly report projects starting with vague model goals [116, 160, 102].

Even in organizations following a product-first trajectory, product requirements are often
not translated into clear model requirements. For example, participant P17b reports how
the model team was not clear about the model’s intended target domain, and thus could not
decide what data was considered in scope. The difficulty of providing clear requirements for
an ML model has also been raised in the literature [62, 105, 75, 160, 145, 127]. Ashmore et
al. report mapping product requirements to model requirements as an open challenge [10].

Provided model requirements rarely go beyond accuracy and data security (8¢,).

Requirements given to model teams primarily relate to some notion of accuracy. Beyond

accuracy, requirements for data security and privacy are common, typically imposed by

i~i ‘We aim to
overcome this
challenge of
unrealistic ex-
pectations with
intervention A,
§4.1

-3 We also
target this chal-
lenge in §4.1,
intervention A

NV An exam-
ple of seman-
tic knowledge
boundary, Cf.
§2.2.1

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 21

the data owner or by legal requirements. Literature also frequently discusses how privacy
requirements impact and restrict ML work [14, 103, 75, 52, 76, 53].

We rarely heard of any qualities other than accuracy considered upfront. When prompted,
very few of our interviewees report considerations for fairness either at the product or the
model level. Similarly, no participant brought up requirements for the explainability of
models. This is in stark contrast to the emphasis that fairness and explainability receive in
the literature, e.g., [162, 47,77, 14, 127, 122, 157, 21, 5, 49].

Recommendations Our observations suggest that involving data scientists early when
soliciting product requirements is important (%) and that pursuing a model-first trajectory
entirely without considering product requirements is problematic ((CJ). Conversely, model
requirements are rarely specific enough to allow data scientists to work in isolation without
knowing the broader context of the product and interaction with the product team should
likely be planned as part of the process. Requirements form a key collaboration point between
product and model teams, which should be emphasized even in more distant collaboration
styles (e.g., outsourced model development). Vogelsang and Borg also provide similar
recommendations to consult data scientists from the beginning to help elicit requirements
[144].

ML literacy for customers and product teams appears to be important (*&#). Participants
suggested conducting technical ML training sessions to educate clients; similar training
is also useful for members of product teams. Several papers argue for similar training for
non-technical users of ML products [56, 122, 144].

Most organizations elicit requirements only rather informally and rarely have good
documentation, especially, but not only, when it comes to model requirements. It seems

beneficial to adopt more formal requirements documentation for product and model ([3), as

several participants reported that it fosters shared understanding at this collaboration point.

Checklists could help to cover a broader range of model quality requirements, such as model
latency, fairness, and explainability, in such requirements. Formalisms such as model cards

[85] could be extended to cover more of these model requirements.

3.1.3 Discussion

Data scientists and software engineers are certainly not the first to realize that interdisciplinary
collaborations are challenging and fraught with communication and cultural problems [17],
yet it seems that many organizations building ML products pay little attention to fostering
better interdisciplinary collaboration. Organizations differ widely in their structures and

practices, and some organizations have found strategies that work for them. Yet, we find

i~i We target
this challenge
in intervention
B (§4.2) and C
(84.3)

3.1 Identification A: Interview Study of Collab. Challenges in Building ML Products 22

that most organizations do not deliberately plan their structures and practices and have little
insight into available choices and their tradeoffs. Based on the challenges identified in this
study, we see four broad themes that benefit from more attention both in engineering practice

and in research:

‘&t Communication issues: Many issues are rooted in miscommunication between partici-
pants with different backgrounds. To facilitate interdisciplinary collaboration, education
is key, including Al literacy for software engineers and managers (and even customers) but
also training software engineers to understand data science concerns. The idea of T-shaped
professionals [139] (deep expertise in one area, broad knowledge of others) can provide

guidance for training and hiring.

[@ Lacking documentation: Clearly documenting expectations between teams is impor-
tant. Traditional interface documentation familiar to software engineers may be a starting
point, but practices for documenting model requirements, and assured model qualities are
not well established. Recent suggestions like model cards [85] are a good starting point
for encouraging better, more standardized documentation of ML. components, but capture
only select qualities. Given the interdisciplinary nature at these collaboration points, such
documentation must be understood by all involved — theories of boundary objects [3] may
help to develop better interface description mechanisms.

& Underinvesting in engineering: With attention focused on ML innovations, many
organizations seem to underestimate the engineering effort required to turn a model into
a product to be operated and maintained reliably in production. Arguably ML increases
software complexity [59, 119, 96] and makes engineering-heavy practices such as data quality
checks, deployment automation, and testing in production even more important. Project
managers should ensure that both the ML and the non-ML parts of the project have sufficient

engineering capabilities and foster product and operations thinking from the start.

[Lack of planning and process: Finally, ML with its more science-like process chal-
lenges traditional software process life cycles. It seems clear that product requirements
cannot be established without involving data scientists in model prototyping, and often it
may be advisable to adopt a model-first trajectory to reduce risk. But while a focus on
the product and overall process may be delayed, neglecting it entirely invites the kind of
problems reported by our participants. Whether it may look more like the spiral model

§-3 Commu-
nication and
education is a
key theme for
our interven-
tions in §4

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 23

or agile [18], more research into integrated process life cycles for ML products (covering

software engineering and data science steps) in all their different forms is needed.

3.2 Identification B: Meta-Summary of Challenges in Build-
ing ML Products

This section is a strongly shortened version of the CAIN’23 paper [90]: "A Meta-
Summary of Challenges in Building Products with ML Components — Collecting
Experiences from 4758+ Practitioners" [Nahar et al., 2023]

While there is no prior work on identifying collaboration challenges specifically, we find
studies on identifying challenges faced by practitioners on different aspects of building ML
products. Many researchers have interviewed or surveyed practitioners to identify what has
really changed for them with the introduction of machine learning, often with the goal of
identifying challenges, research opportunities, and best practices in a rapidly changing field.
While some studies focus on specific aspects, such as challenges regarding requirements
[143, 105], or fairness [47, 108], many others explore challenges more broadly. Many of
these studies have identified similar challenges. We believe that we have reached a point
where practices have settled and research on challenges approaches saturation — we think that
now is a good time to step back and survey the collective findings of the research community.
This collected challenge catalog will also enable us to triangulate the collaboration challenges
identified in section 3.1 and discern the implicit alignment between them.

Thus, in this study, we aim to consolidate knowledge about challenges in the practice of
building ML products, with a systematic literature survey of existing studies that interviewed
or surveyed industry practitioners across multiple projects. We identified 50 studies of which,
30 conducted interviews, 11 conducted surveys, and nine did both, with a total of over
4758 identified participants (seven studies did not report the number of participants; some
participants may have participated in multiple studies). Using the meta-summary research
method [118, 110, 36], we analyze, organize, and synthesize findings across all these studies
(as shown in Figure 3.3), answering the overall research question: What are the challenges
experienced by industry practitioners in building ML products?

We group the challenges found in the meta-summary into categories. In a nutshell, we find
practitioners struggle in different product development stages: (1) requirements engineering,
(2) architecture, design, and implementation, and (3) quality assurance. We also find several
engineering challenges in ML-specific stages, in particular (4) model development, and (5)

data engineering. Other issues relate to cross-cutting concerns related to (6) process, and (7)

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 24

Systematic Literature Review (SLR) one round of backward
snowballing

r@“l

v - —-Y—E

select seed define search search in filter by select final
papers strategy e-libraries criteria set of papers

Qualitative Meta-Summary Synthesis

W \
NT—=

o

o
calculate effect abstract and group topically extract
sizes format findings similar findings findings

Fig. 3.3 Identification B: Research Design

organization and teams. Table 3.1 contains a summary of the findings. In this proposal, we
only elaborate on the challenges from category (1) and (2); readers interested in the other

challenges can refer to the full paper.

3.2.1 Completed Work: Research Design

The goal of this study is to summarize challenges in building ML products, accumulated
from industry practitioners in prior research. To achieve this goal and answer our research
question, we first define the appropriate search strategy and study selection criteria to
find the relevant literature that identifies challenges through communicating with industry
practitioners. We follow the guidelines for systematic literature review (SLR) for this
paper collection step [61]. Then, we extract the data from the selected papers and analyze
the data to complete the synthesis process. Several approaches have been explored for
synthesizing qualitative research in software engineering, such as thematic synthesis, meta-
ethnography, and meta-summary [50]. As we aim to discover patterns or themes of challenges
in building ML products, as well as get a sense of the priority of the challenges based on the
frequency of reports by industry practitioners, the meta-summary method is best suited for

this research problem [50, 110, 118]. The meta-summary method provides a well-balanced

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 25

Requirements Engineering: Lack of Al literacy causes unrealistic expectations from customers,
managers, and even other team members e Vagueness in ML problem specifications makes it
difficult to map business goals to performance metrics ® Regulatory constraints specific to data and
ML introduce additional requirements that restrict development

Architecture, Design, and Implementation: Transitioning from a model-centric to a pipeline-
driven or system-wide view is considered important for moving into production, but a difficult
paradigm shift for many teams e ML adds substantial design complexity with many, often implicit,
data and tooling dependencies, and entanglements due to a lack of modularity e Difficulty in scaling
model training and deployment on diverse hardware @ While monitorability and planning for change
are often considered important, they are mostly considered only late after launching

Model Development: Model development benefits from engineering infrastructure and tooling
but provided infrastructure and technical support are limited in many teams e Code quality is not
standardized in model development tools, leading to conflicts about code quality

Data Engineering: Data quality is considered important, but difficult for practitioners and not
well supported by tools e Internal data security and privacy policies restrict data access and use e
Although training-serving skew is common, many teams lack support for its required detection and
monitoring e Data versioning and provenance tracking are often seen as elusive, with not enough
tool support

Quality Assurance: Testing and debugging ML models is difficult due to lack of specifications e
Testing of model interactions, pipelines, and the entire system is considered challenging and often
neglected e Testing and monitoring models in production are considered important but difficult, and
often not done e There are no standard processes or guidelines on how to assess system qualities
such as fairness, security, and safety in practice

Process: Development of products with ML component(s) is often ad-hoc, lacking well-defined
processes @ The uncertainty in ML development makes it hard to plan and estimate effort and time
Organization and Teams: Building products with ML components requires diverse skill sets,
which is often missing in development teams ® Many teams are not well prepared for the extensive
interdisciplinary collaboration and communication needed in ML products ¢ ML development can
be costly and resource limits can substantially curb/limit efforts @ Lack of organizational incentives,
resources, and education hampers achieving all system-level qualities

Table 3.1 Overview of Identified Challenges

synthesis mechanism, which is deeper than mapping studies, and not as exhaustive as meta-
ethnography, which requires significant expertise and experience with the methodology and
its philosophical stance [110]. Thus, we apply the meta-summary method [118, 36, 110] to
perform the quantitative aggregation of the qualitative evidence that we present as findings.

Figure 3.3 shows the overview of the research process followed in this study.

Paper Selection

To increase the reliability, reproducibility, and objectivity of the process for paper selection,
we follow the established procedure of conducting systematic literature reviews [61]. Defin-

ing the right scope and corresponding search query required some iteration. We started by

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 26

assembling an initial set of 21 papers as a seed set (a common practice [38, 76]). The seed set
was composed of papers that we knew well from our past work in this field. We then analyzed
the seed set to define the keywords needed to retrieve those and similar papers. Based on
them, we developed a search query, which we use to search papers in digital libraries and
databases commonly used by software engineering review papers, e.g., [57, 25, 72]. This
provided us with a total of 341 papers. Next, we selected 86 relevant papers by reading
the title and abstract, and evaluating them against our pre-defined inclusion and exclusion
criteria. To capture relevant papers that did not match our keywords in their abstract, we
performed one iteration of backward snowballing [158].

Overall, our process resulted in a final set of 50 papers. Most of the papers were published
after 2019. This sudden explosion of interview and survey studies with practitioners in recent
years justifies our motivation for this study to aggregate all the findings of these papers.
Most of the papers, 30 out of 50, were published in software engineering venues (including
five at WAIN/CAIN), 11 papers in HCI venues, two papers in Al Ethics venues, and the
seven remaining ones are scattered over other communities. A total of 947 interviews and
3811 survey responses were reported in 43 papers, and the seven remaining papers did not
report specific counts of the interviewed or surveyed practitioners. Of the 50 papers, 31
papers explicitly list research questions or the aim of their research as the identification of
challenges (or issues, problems, difficulties) in different aspects of building ML products.
The other papers do not explicitly set a goal of identifying challenges but more broadly study
the process of building ML products, yet they also report practitioner challenges in their
findings.

Qualitative Meta-Summary Process

As stated earlier, we used the meta-summary research method [118, 110, 36] to synthesize the
findings from the collected papers. This method is used to perform quantitative aggregation
of qualitative findings, which are necessarily the thematic summaries of the underlying data
from different studies. We conduct the following steps to perform the synthesis, as per the
guidelines.

Extracting findings. Along with the standard metadata (title, source, venue, year, etc.),
we extracted study-specific data regarding research questions, study method, interview and
survey participant counts, and, most importantly, the challenges reported within the papers.
We extracted challenges related to building software systems with ML components, but
excluded those that relate exclusively to the data- and model-related work performed by a

data scientist, such as algorithmic problems, notebook coding, and hyper-parameter tuning.

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 27

We extracted a total of 520 excerpts relating to challenges from the 50 papers. We stored all

extracted information from each paper in a spreadsheet for further analysis.

Grouping topically similar findings. We organize the findings at the level of reported
challenges that we extracted from the papers. We use card sorting to group similar findings
[130, 51]. There were many rounds of card sorting including moving the cards back and
forth between different clusters, splitting the cards to handle different dimensions, merging
similar clusters, and splitting clusters. We developed three layers of clustering — the reported
challenges extracted from the papers as the smallest unit, groups of common themes or
patterns in the challenges as the second layer, and finally a third (or top) layer grouping
the second layer clusters by development stages or cross-cutting concerns for the ease of

reporting results.

Abstracting and formatting findings. For each of the second layer clusters, we abstracted
out the concrete details of the reported challenges and summarized the clusters based on the
identified themes of the groups. For this, we once again looked into the cards of each of the
clusters individually and attempted to develop broad statements that capture the content of

the cards in that cluster.

Calculating effect sizes. Methods for meta-summaries recommend reporting the frequency
of findings in the original sources [118]. Since many of our analyzed papers ask similar
broad research questions, we can carefully interpret findings mentioned more frequently as
more common, though some papers clearly specialize in specific sub-areas such as fairness
or software architecture [47, 68]. We do not attempt to count frequencies of mentions within
the papers (“intensity effect size”) because they are not consistently reported, but just report
the percentage of papers reporting on a challenge theme (“frequency effect size”).

Limitations and Threats to Validity

All research designs come with limitations that threaten the validity and credibility of results.
As usual, readers should be careful when generalizing findings beyond what is allowed by
the methods. Despite best efforts in our selection methods (SLR process, snowballing) we
may have missed some relevant papers. In setting clear rules for scope, we had to make some
judgment calls by consensus of all researchers for a number of papers, for example, whether
to include [45, 6, 15, 11, 124].

As discussed earlier, the meta-summary synthesis method was chosen deliberately for its

fit, but comes with its own limitations: it does not analyze original raw data, but only what is

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 28

reported by other papers. Organizing and categorizing the data required some interpretation
of the papers and some judgment calls. The method encourages quantification of effect
sizes, but those may not be entirely reliable as the analyzed papers use different methods and
sometimes focus on specific subquestions.

It would have been interesting to analyze findings in additional dimensions, for example,
whether team members in different roles or projects, or in different application domains,
experience different challenges, or whether different challenges surface depending on the
research method in the original study (e.g., survey vs. interview, open question vs. closed
question). Unfortunately, data in the original studies is frequently not reported consistently
and with enough granularity to enable such analyses.

While the meta-summary method can in principle also identify conflicts within the litera-
ture, this was not feasible in our study. The analyzed papers typically reported challenges,
not the absence or relative importance of certain challenges. Given that different papers often
had a different focus, rather than being replications of each other, we cannot conclude that
not mentioning a challenge implies that there was no such challenge. Hence, we limited our

analysis to aggregating and grouping reported challenges.

3.2.2 Findings

We report our findings of the meta-summary using the layers derived from the card sorting.
The top layer includes development stages (1) Requirements Engineering, (2) Architecture,
Design, and Implementation (with a special focus on (2a) Model Development and (2b)
Data Engineering), and (3) Quality Assurance, plus (4) Process challenges and (5) Team
challenges as crosscutting concerns. Within these top layer headings, we have our second
layer clusters which are the abstracted challenges based on our identified themes, reported as

the sub-headings in the following sections.

Note: In this proposal, we only include Requirements Engineering and Quality Assurance
as two example layers; readers interested in the other ones can refer to the full paper.

Requirements Engineering

Requirements engineering is known as an important and challenging stage of any software
project, but as a consistent theme, we find that practitioners argue that the incorporation of

ML further complicates requirements engineering.

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 29

Lack of Al literacy causes unrealistic expectations from customers, managers, and even
other team members [11, 125, 64, 143, 62, 79, 140, 149, 56, 88, 161, 48,71,91, 112, 32,
971 (17/50). Across many studies, many practitioners report that customers frequently have
unrealistic expectations of ML capabilities in a product, like demanding a complete lack of
false positives or expecting very high accuracy that is infeasible with provided resources (e.g.,
data, funding). Commonly, practitioners similarly blame a lack of Al literacy on customers
not wanting to pay for the continuous improvement of the model: they have a static view of
model development [56, 88] and only consider paying for coding, as they do not understand
the need for experimental analysis [71] and even difficulty convincing engineering teams
to invest in collecting high-quality data [62]. The issue of unrealistic requirements does
not only come from customers, but also from team members within the company itself:
Data scientists find it hard to explain the capabilities of ML to managers, requirements
engineers, and even designers [149, 88, 48, 91, 32, 97]. According to practitioners, a lack
of Al literacy in team members manifests particularly in defining and scoping the project:
Stakeholders find it hard to understand the suitability of applying ML itself [64, 161],
scoping and deciding the functional and non-functional requirements [143, 71], interpreting
the model outcomes [125, 91, 112], and the infrastructure needs (e.g., appropriate data,

monitoring infrastructure, retraining requirements) when building products [143, 161, 91].

Many practitioners also report that ML-specific system-level qualities like fairness and
explainability are frequently ignored during requirements elicitation, as the stakeholders are
not aware of them [143, 88, 108, 14].

Vagueness in ML problem specifications makes it difficult to map business goals to
performance metrics [129, 70, 67, 125, 64, 143, 140, 149, 88, 108, 47, 71, 42, 91, 112,
75, 97] (17/50). Practitioners across many studies mention the challenge of formulating the
specific software and ML problem in a way that satisfies business goals and objectives. ML
practitioners find it difficult to map the high-level business goals to the low-level requirements

for a model. While customers are broadly interested in improving the business, practitioners

often find it difficult to quantify the contribution of the ML model and its return on investment.

Also, Responsible Al initiatives find it difficult to quantify their contributions to the business,
for example, measuring the value added by improving fairness and explainability, or to
deliberate about tradeoffs between conflicting fairness and business objectives [14, 108,
47, 97]. Even with some notion of the responsible Al requirements in hand, practitioners
find the requirements vague and not concrete enough to actually implement (e.g., unclear
subpopulations and protected characteristics to balance discrimination) [143, 108]. On the
other hand, practitioners also frequently report that many projects are exploratory without

This lack of Al
literacy also
came up in
§3.1), and
supported in
§4.1 6D

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 30

clear upfront business goals, thus, starting off the project without clear requirements is pretty
common, albeit often problematic [125, 149, 71, 42].

Regulatory constraints specific to data and ML introduce additional requirements that
restrict development [42, 124, 143, 14, 48, 93, 125] (7/50). Practitioners in multiple
studies expressed how regulatory restrictions constrain ML development and require audits
and involvement from legal teams. Privacy laws such as GDPR impose additional require-
ments on ML practitioners such as ensuring the collection of individual consent [143, 48]
and providing the nontrivial ability to remove individuals from training data after they re-
voke consent. Similarly, practitioners in regulated domains report a need for explainability
and transparency that prevents them from using deep learning and post-hoc explainability
techniques [124, 42, 14].

Quality Assurance

One of the biggest changes that the incorporation of ML models has brought into traditional
software development is challenging the traditional notion of correctness, where models are
evaluated for accuracy or fit rather than whether they fully meet a specification. Understand-
ably this impacts the conventional processes and practices associated with testing and quality

assurance.

Testing and debugging ML models is difficult due to lack of specifications [125, 140,
56, 107, 163, 87, 40, 70, 67, 149, 88, 71, 123, 42, 112, 126, 75, 4, 9] (19/50). Practitioners
find testing and debugging ML models challenging. In particular, they ubiquitously report
difficulty establishing quality assurance criteria and metrics, given that no model is expected
to be always correct, but it is difficult to define what amount and what kind of mistakes are
acceptable for a model [71, 42, 75, 70, 149, 88, 9, 56, 163, 40]. In particular, practitioners
find it difficult to define accuracy thresholds for evaluations. Furthermore, practitioners report
finding it difficult to select adequate test data, specifically curating test data of sufficient
quality and quantity that is representative of the production environment [67, 149, 140, 107,
87]. Curating test data for ML testing is also considered costly and labor-intensive, and
practitioners desire methods and tools from the research community for automated test input
generation to reduce this cost [70, 149, 56]. Practitioners consider it a challenge to get labels
for test data and evaluate test quality (e.g., in terms of coverage) due to the difficulty of
defining the valid input space and the test oracle problem [70, 149, 40]. Practitioners also
mention the silent failing of models (i.e., models give wrong answers rather than crashing),
the long tail of corner cases, and the “invisible errors”, that are handled on an ad-hoc

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 31

basis without a systematic framework or a standard approach [126, 149, 40]. Additionally,
practitioners raise challenges regarding evaluating model robustness, on one hand, suffering
from the lack of a concrete methodology [107, 40], and on the other hand, having various

metrics but no consensus on which metric to use [70].

Testing of model interactions, pipelines, and the entire product is considered challenging
and often neglected [75, 70, 64, 88, 107, 163, 87, 40] (8/50). Testing literature often
focuses on ML models and data quality, but less on how models are integrated into the
product, and even less on the infrastructure to produce the models. Practitioners find sole
unit testing of individual models insufficient and ineffective, due to the entanglement of
models and different ML components, as well as the difficulty of explaining why an error
occurred due to the low interpretability of individual models [70, 149, 163]. The lack
of pipeline and system testing beyond the model is also considered a problematic area
[64, 88, 107, 163, 87, 40]: While practitioners tend to focus more on the data- and model-
related issues, the error handling around the model is found to be insufficient in previous
studies [163, 40], leading to system failures even where the model gives the correct results
[87]. Practitioners also report having no systematic evaluation strategy or automated tools

and techniques for pipeline and system-level testing [70, 88].

Testing and monitoring models in production are considered important but difficult,
and often not done [125, 126, 70, 88, 107] (5/50). Many practitioners recognize the
need to test in production (online testing), since offline test data for models may not be
representative, especially as data distributions drift. However, practitioners consider online
testing complex as it is not trivial for them to design online metrics that depend not only
on the model but also on the external environment, user interactions after deployment, and
the context of the product overall [126, 70]. Practitioners also find online testing very
time-consuming, as it requires longer observation periods to determine meaningful results
[125, 126]. Practitioners also pointed out that there is no surefire strategy to precisely detect
when the model is underperforming in online testing [126].

There are no standard processes or guidelines on how to assess product qualities such
as fairness, security, and safety in practice [54, 63, 47, 140, 48, 111, 124, 14, 15] (9/50).
Research often discusses how machine learning influences fairness, robustness, security,
safety, and other qualities, but practitioners report that they find evaluating these challenging.
While practitioners consider these qualities important [54, 63], they often report having

no effective methodology or concrete guidelines for evaluating them [63, 47, 140, 48, 111,

This lack of
guidelines and
processes also
came up in
§3.1 M), and
supported in
§4.3 (D

3.2 Identification B: Meta-Summary of Challenges in Building ML Products 32

124, 15]. Even regarding fairness, which has received a lot of research attention lately,
practitioners report finding it hard to apply auditing and de-biasing methods due to not
having a proper process in place [47, 48]. Some practitioners report waiting for complaints
from customers rather than being proactive when it comes to fairness [47] or even blindly

expecting the algorithms to inherently provide qualities like security against attacks [63].

3.2.3 Discussion

With this meta-summary study, we find that practitioners report challenges in all stages
of the development process, from the initial requirements specification stage to quality
assurance of the deployed product. They report a broad range of issues from lacking process,
organizational structure, and team collaboration strategies.

Arguably, many reported challenges are not new to software engineers, and likely many
software engineers may have reported similar challenges in non-ML projects. It seems
though that the introduction of machine learning exacerbates some universal challenges
and introduces new ones. For example, software engineering literature is well aware that
requirements engineering is challenging, with customers having unrealistic expectations
and developers directly jumping into coding without understanding requirements first. While
our study does not support direct comparisons, it seems that these problems haunt ML practi-
tioners more, given how ML inspires hopes for amazing capabilities, but in a way that may be
difficult to understand and specify without substantial ML expertise. Similarly, team collab-
oration and organizational challenges are well-known in traditional software engineering,
but those seem to become even more central with the additional complexity and inclusion of
more people with different backgrounds, cultures, and priorities. Other challenges seem new,
such as the data- and model-related challenges associated with ML components, and several
of the reported challenges regarding architecture and quality assurance stemming from the
different nature of reasoning in machine learning.

A finding from our study is that there is much more consensus on what the challenges
are, than how to overcome them. Some challenges could be addressed with new tooling
or new practices; for others, it may be possible to simply adopt existing good engineering
practices; and yet others may just be intrinsically hard problems. For example, for the
challenges of unrealistic requirements, many practitioners mention suffering from unclear
model requirements, but we still do not seem to have a good solution to that, and additional
research on how to elicit and describe requirements for models may be needed. Another area
for future research would be to better understand and prepare for regulatory constraints and

provide evidence of compliance.

-3 These chal-
lenges of un-
clear model
requirements
and regulatory
constraints are
supported in
our interven-
tions (§4)

3.3 Summary 33

Overall we believe that a lot of progress can be made with better education and better
adoption of good software engineering practices. There are plenty of research opportunities
to create new interventions altogether. We hope that the collection of challenges, which can
be traced to the original studies where they were raised by practitioners, will help select and

prioritize research and education in our community.

3.3 Summary

In this chapter, we explored the challenges (")) encountered in building ML products. The
contributions of this challenge-identification thrust include:

* A list of key challenges identified through an interview study involving 45 practitioners
across 28 organizations.

* A broad catalog of challenges in ML product development, derived from an extensive
meta-summary of academic literature. This study complements our interview findings
and again highlights underlying implicit issues in collaboration.

Furthermore, the chapter demonstrates the application of carefully chosen research
methods aptly suited to our studies, such as grounded theory, systematic literature review, and
qualitative meta-summary, as well as a rich selection of qualitative data analysis techniques.

While many of the identified challenges require research attention, we start by designing
three interventions (§3) to address three specific problems. A recurring issue identified
in both our challenge identification studies is the difficulty of eliciting product and model
requirements. We have found that a significant semantic boundary exists among practitioners
at this collaboration point. To address this, an intervention to facilitate knowledge translation
is necessary, which would foster collaboration, support negotiation, and ensure agreement
during the requirements collaboration point.

A second point that needs to be addressed highlights a conflict of interest among prac-
titioners, leading to the emergence of a pragmatic boundary—arguably the most complex
type of knowledge boundary—centered around responsible AI (RAI). We find that despite
prior efforts to create shared boundary objects such as guidelines for RAI assessment and
documentation [109, 84], collaboration remains challenging at this point due to conflict of
interest among the practitioners. Thus, this situation necessitates a more transformative or
political approach aimed at creating shared interests and agreements.

Lastly, our focus extends to a specific aspect of responsible Al—Explainable Al (XAI),
which due to its novelty, encounters all types of knowledge boundaries; effective develop-
ment in XAl necessitates the establishment of a common lexicon, shared interpretations,

and strategic negotiation points to resolve conflicts. While our meta-summary study high-

3.3 Summary 34

lighted the importance of requirements related to explainability and transparency [121, 26],
especially in regulated domains [21, 7], our interview study revealed a significant gap in
practitioners overlooking the need for model explainability. This stark contrast underscores
asymmetry among different practitioners and stakeholders, indicating a crucial need for an
intervention to bring all parties to a common understanding, and agreement on the importance

of explainability in Al models, and guidance to achieve explainability.

Chapter 4
Designing Interventions

In this chapter, to demonstrate how we can overcome the identified challenges), we
present three studies that design interventions (§+3) aimed at enhancing collaboration within
different spheres, as highlighted in my thesis statement: "Then, (b) I propose interventions to
promote effective collaboration among these development team members."

Through these interventions, we demonstrate principles or ideas of how those collab-
oration problems can be solved, instantiated in the three examples. We make use of the
framework for managing knowledge boundaries by Carlile [23] (as discussed in Chapter 2),
and demonstrate the creation of different boundary objects to bridge the diverse types of
knowledge boundaries, namely, syntactic, semantic, and pragmatic, existing in the problem
space. This is useful especially because not all collaboration issues encompass all three types
of knowledge boundaries, and to devise an effective intervention for a specific collaboration
problem, it is essential to first ascertain the specific type of knowledge boundary or gap
present and then determine the most suitable type of boundary object that can effectively
address and resolve this gap.

In designing our interventions, we primarily focus on bridging the knowledge gaps among
collaborators and enhancing their understanding of each other’s concerns. As previously
discussed in Section 3.2, we emphasize the importance of education and the development of
T-shaped professionals—who possess deep skills in one area and the ability to collaborate
across disciplines—as pivotal in this domain. To assist this learning process, we employ
several strategies, such as providing the professionals with concrete examples and context-
specific information relevant to their product use cases. In this endeavor, we find large
language models (LLMs) to be useful, which may help prepare practitioners, who often work
in silos, to engage effectively with one another. Moreover, we, ourselves, actively engage in
collaborative activities to create boundary objects, so that we have a deeper understanding of

the different mindsets and concerns of various stakeholders while developing the intervention.

36

Collaborators Knowledge Boundaries
Syntactic Semantic Pragmatic
Language mismatch Different interpretation Conflict of interest
Problem A: [] - ol Different format and Different assumptions and
Challenges in eliciting ‘a ab documentation standards subjectively in interpreting
clear, realistic, actionable product model in eliciting model and requirements for model
mod:al require;nents team team product requirements and product
. .E_I_ﬁ - o New vocabulary and These terminologies have Different priorities, and
Pmble_’m B . ah a terminologies such as different interpretations in ~ importance assigned to
Conflict in responsible Al RAI non- “fairess," "transparency,” technical, non-technical RAIl concerns
(RAI) engagement activists champions and "accountability." and regulatory language
@2
ah
Problem C: model team New terms, explainability Different interpretations of Different priorities on
Lack of understanding ® n .@ techniques, and metrics explanations for traditional ~ model explanations based
and support for -¢ t) a software and ML, and for on different purposes and
explainable Al (XAl) product governance different stakeholders use cases
team team

Fig. 4.1 Targetted Problems Across Different Knowledge Boundaries

Broadly, we focus on the following three broad themes for our plans of action to mitigate
the knowledge gaps in our solutions: (a) explicitly defining required terms and concepts,
(b) using LLMs for contextual translation and illustration of concepts, and (c) co-designing
guiding artifacts (depicted in Fig. 4.2). We describe our designed interventions in line with
these themes as follows. For better readability, we have structured the following paragraphs
to outline what the interventions aim to achieve, what challenge the collaboration points
entail, and the broad solution themes or ideas.

Our first intervention aims to facilitate eliciting actionable model requirements, a critical
issue highlighted in our studies under the identification thrust. In both of the challenge-
identification studies, we identified the challenges of unrealistic requirements as a major
problem, where practitioners mention suffering from unclear model requirements, and require
help with eliciting and describing requirements for their intended model in the ML product.
This collaboration point reveals a significant semantic boundary (with coexisting syntactic
boundary, as summarized in Fig. 4.1) and underscores the necessity for a strategy to connect
the model development team—primarily composed of data scientists—and the product team,
which typically includes software engineers and project managers. Our proposed solution
aims to enhance the negotiation process between these teams through effective information
transfer and translation (as summarized in Fig. 4.2, and based on themes (a) and (b)), which
would help each to identify feasible and actionable model requirements and avoid unrealistic
and vague requirements.

Our second intervention aims to encourage data scientists to engage with the principles
of responsible AI (RAI). This collaboration point reveals an unresolved pragmatic boundary

(the syntactic and semantic boundaries are mitigated by existing RAI assessment guides) that

N Cf. §3.1.2
and §3.2.2 for

unclear and un-
realistic model

requirements

" In line
with the rare
consideration of
RAI §3.1.2

37

Collaborators Overcoming Knowledge Boundaries
Transfer Translate Transform
Information processing Creating shared meanings Negotiating practice
Intervention A: [] - ol c Explicitly defined LLM-support to create an
Supporting elicitation of - terminologies and understanding of model
model requirements product model help hints capabilities, and product
team team context for generating model
requirements
Intervention B: .E_I_ﬁ - [Explicitly defined Clear guidance and checklist LLM-supported generation of
Encouraging engagement ﬁ %n» terminologies and for RAI risk assessment and product-specific harm stories to
in responsible Al (RAI o . help hints® practices’ promote interest in RAI
P () activists champions. concems
o
a
Intervention C: model team Establishment of a Policy to clearly define XAl Designed the policy following a
Guiding to satisfy o ”n .&_[A common lexicon requirements, and guide collaborative approach to
explainable Al (XAl) -;me L an model and product team for satisfy the interests of both
requirements product governance compliance technical and regulatory
team team audience
Solution o Explicitly defining required Using LLMs for contextual translation Co-designing guiding *Supported by existing intervention:
Themes: terms and concepts and illustration of concepts artifacts RAl impact assessment guides

Fig. 4.2 Interventions Facilitating Collaboration to Overcome Knowledge Boundaries

results from a conflict of interest among the data scientists, software engineers, and the rest
of the product development team with the project manager and the governance team. Despite
well-recognized harms from ML products to the end-users, data scientists and software
engineers often feel resistant or indifferent to the importance of ethical considerations in
developing ML products [108, 88], who we refer to as non-champions. Our proposed
solution aims to align the values and practices of non-champion data scientists with broader
organizational goals through a transformational approach (primarily based on theme (b))
that promotes awareness and acceptance.

Finally, our third intervention aims to establish a common ground for explainable Al
for the development team and the stakeholders who require explanations. Explainable Al
increases the relative complexity and novelty in the knowledge boundary, as the concept
of explainability differs significantly for machine learning from its traditional notions in
software engineering. In software engineering, explainability is achieved through well-
documented, deterministic algorithms and supported by debugging tools that allow direct
tracing from inputs to outputs. In contrast, explainability in ML involves deciphering the
"black box" of complex algorithms where decisions are data-derived and not directly written
in code, shifting the focus of explainability to understanding the layers of abstraction and
approximation that occur within the algorithm. This collaborative point reveals all syntactic,
semantic, and pragmatic boundaries that are still unresolved. Our proposed solution aims
to establish a common ground by creating a policy as a boundary object (inline with the
theme (c)) that would guide the data scientists and software engineers on what explanations

to generate, for whom, and for what purposes.

" In line
with the no
standard pro-
cess for XAl
§3.2.2

4.1 Intervention A: Supporting Elicitation of Model Requirements 38

4.1 Intervention A: Supporting Elicitation of Model Re-

quirements

As discussed in Section 3.1, our investigations revealed significant collaboration challenges
during the requirements and planning stages of ML product development. We identified a
constant tension between eliciting product requirements (i.e., functional and non-functional
requirements of the overall product) and model requirements (i.e., goals and constraints
of the model, such as accuracy, latency, memory, and data availability), which manifests
two problematic scenarios: (a) often project managers and software engineers, with a lack
of understanding of the model’s capabilities, define requirements without involving data
scientists, which leads to unrealistic model requirements, (b) conversely, when data scientists
are tasked with requirements elicitation, they tend to prioritize specifications pertinent to the
model, often overlooking broader product requirements such as usability. This misalignment
highlights the need for a more collaborative approach to requirements elicitation in ML
products.

Furthermore, data scientists frequently receive vague model requirements. Even if they
try to infer intentions behind them, it is hard for them as they are constrained by having a
limited understanding of the product that the model will eventually support. For example, the
data scientists may receive some data and a goal to predict something with high accuracy, but
no further context, e.g., one of our interviewees shared “there isn’t always an actual spec of
exactly what data they have, what data they think they’re going to have and what they want
the model to do.” The difficulty of providing clear requirements for an ML model has also
been raised in the literature [62, 105, 75, 160, 145, 127].

To address this challenge, we intend to develop an intervention that helps educate both
data scientists and software engineers to bridge their knowledge gap so that they can elicit
appropriate model requirements. Our proposed solution is to create an assistant leveraging
large language models (LLMs). On one hand, this tool will support data scientists in
identifying relevant model requirements tailored to the specific context of the product, as
well as ask the right questions to software engineers and project managers (a translation
process depicted in Fig. 4.2 — it also supports knowledge transfer, but we focus on the
higher level here), which would help the data scientists negotiate and reach a consensus on
model specifications. On the other hand, the tool will assist software engineers in formulating
realistic model requirements that align with the capabilities of an expected model. In this way,
by allowing both sides to refine their requirements independently before engaging in cross-
team negotiation, the tool will foster a more grounded and effective collaboration process.
Additionally, the intervention will help validate whether the overall model requirements are

"X Find the
details on
vague model
requirements in
the second find-
ing in §3.1.2 (p.
18)

4.1 Intervention A: Supporting Elicitation of Model Requirements 39

consistent and satisfiable. Overall, we aim to answer the following research question: How
to design a generative AI prompt engineering pipeline to help siloed data scientists and

software engineers elicit model requirements that are realistic, concrete, and complete?

4.1.1 Problem Scoping

In the industry, we observed that data scientists often operate in isolation, often struggling
with unclear model requirements and having limited access to team members who could
provide necessary clarifications. Recognizing the value of efficient and productive meetings,
our goal is to empower these data scientists to better prepare for such interactions. First,
our tool would help them generate initial model requirements in isolation by suggesting
clearer and actionable model requirements with the broad product context in mind. Second,
it would suggest specific clarification questions that they can ask during discussions with
team members. Ultimately, this preparation will enhance their ability to negotiate and fully
comprehend the model requirements.

We also observed that project managers and software engineers often establish unrealistic
model requirements due to not involving data scientists in the initial requirements elicitation
process. To address this, our tool would assist such team members with limited Al knowledge
to identify unrealistic assumptions about model capabilities and make the model requirements
concrete and actionable, even when data scientists are not present in meetings. This approach
will enhance collaboration by fostering a better understanding of each other’s perspectives

and ensuring more realistic and achievable project goals.

4.1.2 Proposed Work: Research Design

For better negotiation of model requirements, we leverage the concept of negotiation cards, '
a boundary object to invoke discussion among different stakeholders and reach agreements
on product and model requirements. Our approach involves the creation and refinement
of negotiation cards through a dynamic and interactive process, with multiple interaction
points from its initial generation to iterative refinement until a final agreement is reached.
In this whole interaction, we want to (a) enable data scientists to ask the “right”” questions
to the software developers and project managers, (b) guide software engineers and project
managers in defining realistic requirements for the model capabilities, and (c) help both
parties to identify any overlooked requirements, and create more concrete and achievable
requirements for the ML product.

'A concept from MLTE [78], not published yet

4.1 Intervention A: Supporting Elicitation of Model Requirements 40

Put in product and e Get continuous suggestions
.l_adl model information on model requirements

—> G
Siloed Data

ed® Repeat until
Scientist o; agreement is
an? reached

Negotiation Card
Generative Al

' vice a .
versa" Prompt Pipeline

Software Engineer < Neqotiat del
egotiate model req.) .
and Rest of the with better preparation o Refine model requirements

Product Team

Fig. 4.3 Intervention A: Proposed Approach

Proposed Approach. We plan to develop two distinct prompt pipelines tailored to meet the
specific needs of data scientists, and software engineers (and other members of the product
team). For data scientists, the custom pipeline will assist them in incorporating the product
context while generating the model requirements, including proposing potential requirements
and providing clarification questions that can be posed to the product-side team to reach a
mutual agreement on the requirements.

The workflow for data scientists (as depicted in Fig. 4.3 interacting with this process
progresses as follows:

(1) Initiate: In this step, we will leverage on an existing framework called Machine
Learning Test and Evaluation (MLTE) [78], designed to provide a structured process for
evaluating ML products. This framework aims to ensure that models deployed in real-world
settings are both effective and aligned with the broader goals of organizations and their
stakeholders. MLTE supports negotiation on model quality requirements between developers
and stakeholders through negotiation cards.

Our approach will incorporate MLTE along with negotiation cards, which will allow
the data scientists to use the framework’s user interface (UI) to put in the initial model and
product information at this stage.

(2) Generate: In this step, we will leverage on the generative Al capabilities through
a customized prompt engineering pipeline. Prompt engineering [104] is the practice of
crafting effective input prompts to guide the behavior of generative Al models, a technique
increasingly prevalent across various applications [147, 66, 152].

We will develop a prompt engineering pipeline specifically designed to assist data

scientists in eliciting model requirements. This specialized pipeline will generate model

4.1 Intervention A: Supporting Elicitation of Model Requirements 41

127.0.01

B 127001:8000f00gin

o _
£ 2MLTE vt eatuaton

Welcome, admin | Logout Manage Users

Artifact Store > Negotiation Card

Teams should work through as many of the following items before starting model development. The Negotiation Card can and should be revisited
atany negotiation point. Teams should refer to this Negotiation Card during development to ensure they capture all relevant critical aspects of the
maodel and system. Hover over the black information icons next to each field to get more information about that field. Click on the Example button
to see specific examples for a section.

TEC Import
Last Modified by:
System Context -5/30/2024, 8:49:21 AM
Choose File no file selected
Raw Data
Choose File no file selected Goals

Goals or objectives that the model is going to help satisfy as part of the system.
Development Environment

—) Goal1l
Choose File no file selected

X . Goal Description @
Production Environment

Cheose File no file selected The model should perform well.

Metrics

Cancel Save

Fig. 4.4 MLTE User Interface

requirements considering the product context, so that the requirements align with the ML
product’s needs and objectives.

(3) Refine: At this phase, the data scientists would enter model requirements into the
negotiation cards and iteratively refine them using the continuous recommendations from
the generative Al model, again through a customized prompt engineering pipeline. At this
point, the pipeline would also generate targeted clarification questions for the product team.
These questions would be designed to facilitate effective dialogue and negotiation between
data scientists and product team members to align the model requirements with the product’s
objectives as well as the model’s capabilities.

(4) Negotiate: Equipped with a well-prepared set of model requirements, at this stage,
the data scientist would present and negotiate the model requirments with the product team.

(5) Iterate: The workflow is repeated until an agreement is reached amongst all stake-
holders.

For software engineers and other product-side stakeholders, the workflow is essentially

reversed, with tailored modifications in the suggestions from the generative Al pipeline

4.1 Intervention A: Supporting Elicitation of Model Requirements 42

in step (2). Specifically, here, the pipeline would focus more on the model’s context and

establish guardrails to prevent unrealistic expectations regarding the model’s capabilities.

Plan for Evaluation. To assess the efficacy of the proposed novel approach for eliciting
model requirement, we will implement it as a prototype tool and conduct a controlled experi-
ment under laboratory conditions. The primary objective of this evaluation is to determine
whether this approach aids novice data scientists or software engineers in negotiating and
formulating realistic, clear, and actionable model requirements.

For the experiment, participants will be recruited from a pool of students and practitioners
who possess experience in either data science or software engineering, but lack experience in
the complementary field. This selection criterion ensures that participants are representative
of the siloed practitioners who would benefit from the proposed tool in a real-world context.
The experiment will employ a between-subjects design, randomly assigning participants to
either an experimental group, who will use the proposed tool, or a control group, who will not
have access to the tool. In order to contextualize the tasks, we will use one of the ML product
use-cases derived from our catalog of open-source ML products, as discussed in Chapter
5 (%3). Participants will engage in a role-playing scenario designed to simulate real-world
interactions between data scientists and product development teams. For participants with
a data science background, the evaluator will assume the role of a product team member,
whereas for participants from a software engineering background, the evaluator will assume
the role of a data scientist. This role-playing activity is intended to mimic authentic cross-
disciplinary communication and requirement gathering.

To begin with the study, the participants will receive an overview of the project and
their assigned role within the scenario. The overview will include a brief description of
the product and model requirements, replicating initial project briefs typically encountered
in professional settings. Participants will then engage in a controlled interaction with the
evaluator: the evaluator will respond to participant queries but will not volunteer information
unprompted. This will allow us to observe whether the tool facilitates the generation of
clarification questions and assists participants in eliciting comprehensive model requirements.
We would also observe how participants navigate and overcome ambiguities in the project
description during generation of the model requirements. Throughout the interaction, data
will be collected on several metrics: quality of clarification questions: the number and
relevance of the questions asked by the participants aimed at clarifying ambiguities, quality
of requirements: comprehensiveness and clarity of the model requirements generated by the

participants, participant confidence: self-reported levels of confidence in the requirement

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 43

elicitation task, measured through post-interaction surveys, and efficiency: time taken for
participants to reach their satisfactory level in the generated model requirements.

We will conduct both qualitative and quantitative analysis on the study data. We will carry
out content analysis on the interaction transcripts to identify common themes and patterns.
We will also conduct statistical analysis to compare the performance of the experimental
group and the control group across the aforementioned metrics. To ensure the validity and
reliability of the experiment, we will conduct several pilot studies at the beginning to refine
the interaction protocol. We will also have multiple evaluators to independently code and
assess the quality of clarification questions and model requirements to enhance the reliability

of qualitative data.

4.2 Intervention B: Encouraging Engagement in Responsi-
ble AI (RAI)

The concept of Responsible Al (RAI) has garnered significant attention in recent years,
within the context of ML product development. Numerous scholarly publications have
explored various RAI techniques and guidelines. However, in both our interview study and
meta-summary study involving academic literature with industry participants, we found a
substantial gap between theoretical research and practical implementation in the industry
[108, 48]. While existing guidelines for RAI assessment, documentation, and tooling [109,
84, 20] help address both syntactic and semantic boundaries among stakeholders by defining
terminologies, translating their interpretations, and providing guidance and checklists, we
find that data scientists and software engineers often exhibit resistance or indifference toward
adopting these solutions for their ML product development, through conducting informal
interviews and shadowing meetings, in close collaboration with an industry partner. We
observed that while the governance team implemented various processes and documentation
templates in the organization to urge data scientists to consider RAI aspects, the data scientists
themselves were reluctant to adopt these measures and even showed annoyance in the absence
of the governance team.

This scenario highlights a severe and unresolved pragmatic knowledge boundary—a
complex type of knowledge boundary characterized by misaligned practical interests and
organizational priorities—among data scientists, software engineers, project managers, and
governance teams. Addressing such a boundary requires more than just a technical solution—
it requires a more transformative and politically nuanced approach to align interests and

foster agreements. Therefore, in response to these challenges, we propose a multi-faceted

N Cf. §3.1

(p.21) and §3.2
(p.29, p.31) for
RAI discussions

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 44

intervention designed to encourage data scientists and software engineers to engage with the
principles of RAI Our intervention specifically targets this pragmatic boundary (and the co-
existed syntactic boundary) and aims to increase awareness and acceptance in data scientists
and software engineers to align their values and practices with the broader organizational
goals and ethical standards.

Central to our intervention is a novel approach that leverages large language models
(LLMs) to generate compelling stories of harm that ML products can inflict on end-users.
This approach employs a comprehensive prompt engineering pipeline to ensure that the stories
produced are concrete, severe, surprising, and diverse. The intent is to make the potential
harms tangible and relatable, thereby fostering a deeper understanding and commitment
to responsible Al practices among practitioners. Overall, we address the following broad
research question: “How to design a generative AI prompt engineering pipeline to
encourage data scientists and software engineers to engage with responsible AI in ML
product development?

4.2.1 Problem Scoping and Related Work

As discussed earlier, despite the well-recognized potential harms that ML products can
cause on end-users, data scientists and software engineers frequently display resistance or
indifference toward integrating RAI considerations into their development processes. Many
companies and governance teams attempt to address this issue by implementing extensive
RAI assessment templates, requiring practitioners to fill them out in order to evaluate the risks
associated with their ML products. However, this approach often exacerbates the situation,
as it is perceived by the resisting stakeholders as an additional burden or "more work." This
perception triggers annoyance and reluctance, with many practitioners believing that their
ML products—especially simpler ones—pose no real harm, thereby overlooking potential
risks due to this biased viewpoint. Our goal is to engage these stakeholders, whom we refer
to as "non-champions" of RAI, and assess whether our proposed intervention can influence
their perspectives and attitudes towards responsible Al.

We find many previous solutions to help stakeholders identify potential harms that their
ML products may cause to end-users, leveraging generative Al models. For instance, AHA!
(Anticipating Harms of Al) is a generative framework designed to assist ML practitioners
and decision-makers in predicting potential harms and unintended consequences of ML
products prior to their development or deployment. This tool uses LLM to generate fictional
scenarios, or vignettes, illustrating how various users might experience problematic ML
behaviors. Another similar tool, Farsight, helps users identify potential harms of their
ML prototypes by highlighting news articles about relevant Al incidents and providing

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 45

LLM-generated potential use cases and harms. Blip is another similar system that retrieves
real-world undesirable consequences from online articles, summarizing and categorizing
them for researchers and practitioners using LLLMs. While these tools are valuable in solving
syntactic and semantic boundaries and cater to individuals who are already motivated to
identify and address potential harms, they lack provisions for guiding or encouraging those
who might not intrinsically consider RAI principles—often due to conflicts of interest or lack
of awareness. Our intervention aims to bridge this gap by specifically targeting individuals
who may not be inherently motivated to engage with RAI practices. We focus on designing
mechanisms that not only educate but also incentivize and motivate this ‘“non-champion”

audience, thereby overcoming the pragmatic boundary.

4.2.2 Proposed Work: Research Design

As our goal is to incentivize "non-champions" to care about RAI, we will design an approach
that will highlight unexpected and severe issues that could arise, impacting end-users in ways
that non-champions may not have envisioned before. By showcasing surprising instances,
our aim is to break through any apathy or resistance, urging these stakeholders to reconsider
their stance on RAIL Highlighting severe examples will underscore the critical nature of
RALI, helping non-champions recognize the gravity of overlooking ethical considerations.
To maintain credibility and engagement, we will ensure that these stories are both relevant
and concrete, steering clear of unrealistic situations that may turn them away. Therefore, we
design a sophisticated pipeline capable of producing harm stories that are severe, surprising,
concrete, relevant, and diverse, which we define as follows:

* Severity/Extremeness: This quality corresponds to the extent to which the story
involves potential harm, considering both the magnitude of the impact (how intense
or profound the harm is) and the scope (how widespread the harm is, including the
number of individuals or communities affected). High-severity stories involve signifi-
cant and extensive harm, affecting numerous individuals or communities profoundly.
Conversely, low-severity stories might describe limited-impact scenarios.

* Surprisingness: This quality measures how unexpected the story is, based on common
examples and media representations. Low surprisingness stories are those that people
can easily think of given the context, often seen in public discourse. High surprisingness
stories are those that are novel and not commonly represented, thus more likely to
catch attention and provoke thought.

* Concreteness: This quality pertains to the specificity and tangibility of the story. A
story with low concreteness offers generic descriptions and lacks specific details. A

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 46

Fairness

Goals l
— o Pre-compute harms
= = e Identify stakeholders
.

System Info.

0 Identify demographics
@ Generate initial stories

6 Regenerate for surprisingness

G Cluster and sample for diversity

@ Refine for concreteness

@ Pick stories with highest severity

Stories

Fig. 4.5 Prompt Engineering Pipeline for Story Generation

story with high concreteness provides a detailed account involving specific named
individuals or entities, making the narrative more relatable and impactful.

* Relevance: This quality assesses how pertinent the story is to the scenario it aims
to illustrate and its alignment with fairness goals. High relevance means the story is
closely related to the description of the scenario and addresses fairness goals such
as quality of service, allocation of resources and opportunities, and minimization of
stereotyping, demeaning, and erasing outputs.

* Diversity: As multiple stories are presented, this quality considers the variety within
the generated stories. High diversity means that the stories differ from each other
in various ways, encompassing different types of stakeholders, demographic groups,
harms, consequences, and model behaviors. This ensures a wide-ranging representation

of scenarios and potential impacts.

Approach. To identify the potential harms prior to generating our stories, we base our
approach on Microsoft’s Responsible Al (RAI) assessment guide [83]—a well-established
framework widely adopted by many organizations for evaluating Responsible Al. This guide
offers a systematic structure for identifying potential harms and assessing their impacts, and
serves as a conversation starter within the development team. While we do not strictly adhere
to the guide, we draw inspiration from various elements, such as identifying stakeholders
prior to brainstorming potential harms, and connecting to different system goals (e.g., quality
of service) for fairness considerations.

Building on this guide and aligning with our desired qualities in the stories, we have
designed a comprehensive prompt engineering pipeline (illustrated in Fig. 4.5). The process

begins by feeding the pipeline with a product overview, which includes a brief description of

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 47

the product, its purpose, and intended uses. For each intended use, the pipeline generates
an output of two harm stories. Additionally, the system allows for the generation of up to
three more harm stories upon user request. It also features capabilities for obtaining feedback
on the generated stories and regenerating them if necessary. It is important to note again
that the objective of this pipeline is not to exhaustively enumerate all potential harms but to
influence and persuade “non-champions”—those not yet fully on board with Responsible Al
principles—by vividly illustrating the real-world implications of ML products on end-users.
This pipeline encompasses eight stages, outlined as follows:

(1) Pre-compute harms: For generating stories for different types of harms, we start by pre-
computing the harms and feeding it to our generative Al model. These pre-computed harms
are based on the three fairness goals outlined by Microsoft’s RAI assessment guide [83]:
quality of service, allocation of resources and opportunities, and stereotyping, demeaning,
and erasing outputs. The generated harms include cultural misrepresentation, reinforcement

of biases, access to opportunities, and erasure of minorities.

(2) Identify stakeholders: At this stage, we use the generative Al model to identify a
comprehensive range of stakeholders. Using two prompts, we generate both direct and
indirect stakeholders, and crucially, put forth less obvious stakeholders alongside the regular
ones, according to design justice [27]. This generation of non-obvious stakeholders is to
broaden the non-champions’ understanding of their ML products’ influence on a varied group
of users. These generated stakeholders are presented as suggestions, allowing the tool users

to select relevant ones as per them.

(3) Identify demographics: For each selected stakeholder, the model generates possible
demographics based on the pre-defined categories, such as age, gender, and ethnicity. This
step is to facilitate the subsequent pipeline steps on creating relevant stories for marginalized
stakeholders.

(4) Generate initial stories: At this stage, the model drafts initial harm stories for each
harm category in relation to stakeholder and demographic group pairs>. This process can
be visualized as a matrix with columns for pre-computed harms and rows for stakeholders,

where each cell contains a generated story illustrating the impact on a specific stakeholder by

ZNote: we are currently assessing the impact of including demographic details alongside stakeholders to
ascertain whether this enhances the story quality. Consequently, we maintain alternate versions of this step, one
with and one without demographic groups.

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 48

Harms | Cultural Access to
Misrepresentation Opportunities
Stakeholder P PP
Movie Watcher ample sto

Movie Producer [Example story...] \

“Rivertown's Movie Recommendation App Triggers Mental Health Crisis
Through Manipulative Content Suggestions”

In the small town of Rivertown, Alex, a 35-year-old with a history of anxiety,
unwittingly became the subject of a disturbing experiment when the ""MovieMind™"
app began recommending a series of increasingly unsettling psychological thrillers.
The Al-driven system, aiming to enhance viewer engagement, utilized deep
learning algorithms to tap into users' psychological vulnerabilities. Alex, identified
as having a high propensity towards emotional engagement with psychological
themes, was overwhelmed with suggestions for movies exploring paranoia,
isolation, and psychological manipulation. Without realizing that his online behavior
had exposed an underlying vulnerability, Alex found himself entangled in a spiral of
fear and obsession. This journey led to a severe mental breakdown. This scenario
was not unique; dozens in Rivertown found themselves ensnared in similar
circumstances, each falling prey to the platform's manipulative content
recommendations. MovieMind, in its quest to maximize engagement, inadvertently
fueled a mental health crisis, leveraging the very sensitivities of its audience it
aimed to captivate.

Fig. 4.6 Story Generation Matrix and an Example Story

a particular harm. This matrix approach (depicted in Fig. 4.6, also found effective in prior
research [20], allows for a broad range of story generation.

(5) Regenerate for surprisingness: During this phase, we regenerate harm stories to
enhance their impact. Given that the generative Al model might default to producing stories
that align with patterns it frequently encounters, we use the initial set of stories as counter-
examples of surprising stories, and prompt the model to generate more surprising stories,
which are also concrete, severe, and relevant to the concerns and realities of the targetted
stakeholders.

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 49

(6) Cluster and sample for diversity: As we aim to present multiple stories (initially
two, extending to five upon request), it is crucial to ensure these stories are distinct from
one another to maintain audience engagement. Thus, to ensure diversity and uniqueness
in the stories, we employ a clustering technique to categorize similar stories together, and
pick stories from different clusters. Specifically, we transform the stories into sentence
embeddings and apply K-means clustering to organize them into 10 clusters. We keep the
five clusters with the fewest stories, as these are likely to be more unique, and randomly pick
a story from each of them.

(7) Refine for concreteness: In this stage, we employ two distinct versions of generative
Al models for refinement. The first model is tasked with refining the stories for concreteness,
with a clear definition of the terms as previously established. The enhanced story is then
handed over to the second model, which evaluates the concreteness of the scenario. If the
story lacks sufficient detail and clarity, the process is repeated, allowing up to three iterations

per story.

(8) Pick stories with the highest severity: Lastly, the model picks two stories from the list
that exemplify the most severity, surprisingness, concreteness, and relevance. The selected

stories are then showcased, with others held in reserve for possible later use or re-evaluation.

Plan for Evaluation. We propose a comprehensive evaluation strategy encompassing both
an experimental study and a user study to rigorously assess the efficacy of our approach in
generating harm stories and the impact of these stories on practitioners. Our evaluation aims
to address the following research questions:

* RQ#1: How effective and efficient (with respect to time and cost) is the approach in
generating severe, surprising, diverse, and concrete stories in comparison to single
prompting or humans?

* RQ#2: How much do the different steps (e.g., story generation, story revising, cluster-
ing, etc.) contribute to the effectiveness and efficiency?

* RQ#3: How useful do the non-champions find the assistance/generated scenarios to
change their perspective towards RAI?

To address RQ#1, we will execute a controlled experimental design, comparing outputs
from our generative approach to both single-prompted and manually crafted stories by human
experts. Efficiency metrics will include time and cost of generation, while effectiveness will
be evaluated via blind reviews of our pre-defined story qualities: severity, surprisingness,

diversity, concreteness, and relevance. For a robust evaluation, different human evaluators

4.2 Intervention B: Encouraging Engagement in Responsible Al (RAI) 50

will initially assess a set of stories for these qualities. We will calculate inter-rater agreement,
and refine instruction and metric definitions until a high inter-rater agreement is reached.
Additionally, we will use a large language model to rate the story qualities and calculate
human-model agreement from these ratings. Achieving high agreement with the model
would permit us a faster and more extensive story rating using the model.

With #RQ2, we aim to dissect which specific steps in the pipeline (such as story genera-
tion, revision, and clustering) contribute most significantly to the overall effectiveness and
efficiency of the story generation. By using an approach similar to the component ablation
study [82], where different pipeline stages will be systematically removed, we would discern
their impact on story quality and pipeline efficiency. Similar story quality evaluation methods
as in RQ#1 will be applied here, but specifically for stories generated by modified pipeline
versions.

RQ#3 is designed to determine whether our pipeline encourages practitioners’ engage-
ment with RAI, and successfully functions as a boundary object to bridge the pragmatic
knowledge gap. This prototype is specifically targeted towards non-champions, individuals
who might not typically consider the implications of RAI. This creates a significant chal-
lenge for recruitment, because such non-champions are less likely to self-select themselves
for this type of study. To address this, we plan to implement several strategies, including
obtaining referrals from RAI champions within organizations who can recommend their
non-champion colleagues, and broad-focus recruitment advertisements on model quality
evaluation (rather than RAI specific) to attract a wider range of participants. Additionally,
prospective participants will undergo a screening process for us to understand their stance on
RAL

The evaluation would use a within-subjects design where participants will engage with a
prototype tool developed from our approach under controlled conditions—interacting with
one fairness goal unaided, and another with the assistance of our generative Al pipeline, with
the order of these interactions randomized to mitigate biases. We aim to qualitatively and
quantitatively measure the effectiveness of the tool by analyzing the number and quality of
harms identified by participants under each condition. We will use the "think aloud" method
during these sessions to get insights into participants’ cognitive processes as they interact
with the tool and foresee potential harms. These sessions will be recorded and qualitatively
analyzed to find patterns, supplemented by pre- and post-study interviews to capture shifts in

RALI perspectives.

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 51

4.3 Intervention C: Guiding to Satisfy Explainable AI (XAI)

Requirements

A subset of this section shares materials with the FAccT 24 paper [164] "Regu-
lating Explainability in Machine Learning Applications — Observations from a
Policy Design Experiment" [Nahar et al., 2024]

Explainable Al (XAI), a component of responsible Al, has received less attention both
in the industry and academia compared to other well-discussed aspects such as fairness
and privacy. Also, unlike fairness and privacy, which have relatively consistent conceptual
interpretations across technical domains (now increasingly emphasized in the context of
ML due to rising data volume), explainability in ML takes on a new meaning that differs
significantly from traditional interpretations, particularly for technical stakeholders such
as data scientists and software engineers. In software engineering, explainability typically
refers to the clarity with which the software code and its architecture are understood and
explained—with deterministic and transparent algorithms. Debugging tools and techniques
like breakpoint setting, step-by-step execution, and variable state examination lend further
support to maintaining high levels of explainability. In contrast, ML explainability refers
to deciphering the "black box" nature of complex algorithms, where the internal decision-
making processes are learned from data and not explicitly written in code. Thus, it does not
simply mean tracing outputs back to inputs but understanding the layers of abstraction and
approximation that occur within the algorithm. This fundamental difference increases the
novelty and complexity at the knowledge boundary [23] between these technical stakeholders,
complicating collaborations among them.

Not just the interpretation of the concept, but also the perceived importance of XAl
varies significantly among different practitioners and stakeholders. While in our meta-
summary study, we observed that requirements are specified for achieving explainability
and transparency [121, 26], with particular importance in regulated domains [21, 7], in our
interview study, we find that practitioners often neglect the necessity for model and product
explainability. This discrepancy underscores a fundamental asymmetry in perceptions and
priorities across various practitioners and stakeholders, and calls for an intervention that
encounters all types of knowledge boundaries—{rom establishing a common lexicon and
shared interpretations to generating strategic negotiation points to resolve conflicts.

Therefore, aimed at bridging syntactic, semantic, and pragmatic boundaries, my third
intervention involves establishing a policy for explainable Al. This policy is intended to
serve as a boundary object that fosters common ground among data scientists, software

engineers, governance people, and other relevant team members. This study is structured

N Cf §3.1
(p-21) and §3.2
(p-30, p31)
for findings

on regulatory
constraints and

requirements

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 52

into two phases: initially, we design the policy through an experimental study involving
an interdisciplinary team of ML and policy researchers, and answer the research question:
“How to write a policy to usefully guide explanations for ML products?”’ Subsequently,
we aim to assess this policy through a large-scale controlled experiment within an educational
setting, to answer ‘“How do data scientists interpret policies, react to different policy
purposes, and provide evidence for compliance?”

4.3.1 Related Work

Explainability and interpretability usually refer to specific tools that extract insights from
otherwise inscrutable models [86], for example, asking what features the model mostly
relies on or what features were influential for a given prediction. Explainability tools are
currently primarily used by experts for debugging [14, 46], but there is also extensive research
about how to make explanations useful to non-experts under the label of human-centered
explainable Al [113], for example, to improve human-Al collaboration, improve usability,
and establish trust.

When designing a policy for transparency or explainability, it is important to understand
what kind of explanations are possible and what their limitations are. The most common
explainability approaches for Al models are either global or local: Global explanations aim to
explain the overall behavior of a model (e.g., what inputs are generally important for deciding
whether to approve a loan), and common techniques include partial dependence plots and
feature importance [86]. In contrast, local explanations provide information about how the
model arrived at a specific decision for a given input (e.g., whether to approve a specific
loan request). Currently, the most common local explanation technique is SHAP (SHapley
Additive exPlanations) [73, 14, 86], unveiling influential features toward and against specific
outcomes.

Whether and how to use explanations to achieve transparency or a right to explanation is
subject to debate. Explanations are necessarily incomplete, there may be multiple explana-
tions for the same behavior, and explanations may not even be correct, assuming we can even
define correctness [86, 114]. End users often ask for descriptions of the data used by the
product and fear that they would not understand more specific explanations [74]. Research
has shown that study participants often misinterpret or place too much trust in explanations

[131, 33, 141], raising concerns that explanations could be used to manipulate users.

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 53

Plan
joye
Readir{gs on technical

explanations, what makes
a good explanation, etc.

Readings orl1 d‘ifferent
policy styles.

Policy Team:

gPolicy Lead

/@G rad Mentor

ACt @Faculty Advisor

Reflect

28 8,
L0 A

Reflect on loopholes,
good and bad
examples, etc.

Exchange

25 A

Create Comply with
policy policy

Iterate
Seven Weeks

Engineering Team:

QEng. Lead

@)
|\/| Grad Mentor

QFaculty Advisor

Observe

9 om 20
AR 5o

Present the policy
and compliance

Fig. 4.7 Tterative and Collaborative Policy Design Process

4.3.2 Ongoing Work: Research Design

As mentioned above, this study is organized into two distinct phases. In the initial phase,
we conducted a 10-week experiment in collaborative policy design with an interdisciplinary
team of ML and policy researchers. Next, we evaluate this policy through a large-scale

controlled experiment set in an educational context.

Collaborative and Iterative Policy Design [Complete]

Policy design for ML products is complex, requiring regulations to encompass a wide array of
algorithms and applications, safeguard human dignity in automated decisions, provide clear
guidance to developers, ensure compliance, and prevent deceptive explanations. To navigate
these challenges, we adopted an exploratory approach, drawing insights from multiple
disciplines and leveraging an interdisciplinary team. For our experiment, we formed a team
across two universities, comprising two senior undergraduate students—a sociology major
with a focus on health policy and a computer science major with a background in machine
learning—referred to as the Policy Lead and Engineering Lead, respectively. Supported by
Ph.D. students and faculty with expertise in sociology and computer science, and consulting
with legal scholars, our team aimed to create balanced policies that met regulatory needs

while accommodating technical realities and fostering innovation.

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 54

Policy design process. The policy design process involves a structured, iterative approach
closely resembling action research methodologies [134, 115], focusing on the development
and refinement of policies for regulating ML explainability. The process was initiated with a
week of background research followed by seven weeks of iterative cycles, each involving
four stages: planning, acting, observing, and reflecting (cf. Fig. 4.7). Each cycle began
the Plan phase, with the Policy Lead examining social science literature on regulation and
the Engineering Lead reviewing ML explainability techniques and human studies to inform
policy compliance strategies. Reflections from the previous week heavily influenced this
stage. Then, in the Act stage, the Policy Lead drafted a new policy which was then examined
by the Engineering Lead, who provided explanations and evidences of compliance using ML
models from healthcare and financial sectors, e.g., ML products for breast cancer detection
and credit risk scoring. The Engineering Lead also designed adversarial examples to highlight
potential policy loopholes. Discussions between the Policy Lead, Engineering Lead, and
the research team took place in the Observe phase to assess the effectiveness of the policy
response and evaluate compliance, analyzing whether the intents behind the policies were
being met with the provided explanations and evidence. The cycle concluded with the Reflect
phase, with the team reflecting on the outcomes, using field notes as a basis to evaluate what
aspects were successful and what could be improved. Learnings from this stage were then
incorporated into the planning of the subsequent cycle.

During this collaborative effort and the iterations, the policy and engineering teams
recorded their progress and reflections weekly in field notes and journals. At the end of the
experiment, we analyzed these notes using open coding to identify common themes through,
and card sorting to categorize the themes, which resulted in nine observations on the policy
design exercise (as depicted in Table 4.1).

The goal behind this four-step iterative process was to gradually enhance and refine the
policy based on trial and error and constant mutual engagement and discussion. Simulta-
neously, the collaborative approach enabled us to formulate policy statements that satisfied
the interests of both sides and to push back against unclear or misguided requirements. For
example, the early policy drafts primarily focused on fairness and transparency about the
data used, but through collaboration and reflection, the policy underwent adjustments and
evolved to incorporate more clearly defined explainability requirements, such as the need for
end-user explanations. In the end, we did not arrive at any single explainability policy like a
“right to explanation,” but we arrived at several reasonable policy drafts for different contexts
and purposes (e.g., Table 4.2).

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 5§

Observation 1: Over the course of seven weeks of iterations, it was possible to draft policies that
addressed the concerns of involved parties and identify explanations to comply with them and
evidence to demonstrate compliance.
Observation 2: Initial policy drafts were naive and influenced by prior knowledge.
Observation 3: Collaboration between the Policy Lead and Engineering Lead facilitated learning
and improvement. Iterative and continuous feedback corrected unclear, unrealistic, unambitious,
overly generic, and too restrictive policy drafts.
Observation 4: It was difficult for the policy team to break from dominant, publicly-circulating
narratives about Al harms and anticipate new challenges.
Observation 5: To overcome misunderstanding, both teams had to reflect on their different world-
views and make their implicit assumptions explicit.
Observation 6: Both teams could intuitively identify bad explanations, even when they did not
agree on what a good explanation would be.
Observation 7: For policy design and compliance, it is necessary to identify a clear purpose as well
as who the policy aims to protect.
Observation 8: Discussing evidence is essential for policy design. Human-subject studies serve as
valuable evidentiary support, alongside technical approaches (e.g., SHAP, accuracy).
Observation 9: Length and language requirements can be limiting. Though these requirements are
easy to specify in policy, they are hard to comply with.

Table 4.1 Summary of the Observations on Policy Design Exercise

Planned Assessment of the Policies [Ongoing]

Upon achieving a set of workable policies, our next step is to evaluate how technical
stakeholders, such as software engineers and data scientists, responded to these policies. For
this, we will explore the types of explanations and evidence they provided to demonstrate
compliance with the policies. Additionally, we will seek to gather their overall impressions
of the policies themselves. To further enhance our understanding, we will assess different
variations of the policy (such as brief and open-ended guidance, or a more detailed and
concrete guidance) to determine which approach most effectively aided stakeholders in
generating clear explanations and robust evidence of compliance.

From our policy design exercise, we recognized that the specific purposes of a policy—
such as empowering users to contest decisions, enhancing human-Al collaboration by pro-
viding decision-makers with more context, or ensuring end-users are treated with respect—
necessitate varying types of compliance information and explanations (highlighted in Obser-
vation 7 of Table 4.1). This diversity in requirements naturally leads to different forms of
evidence being presented by developers. For instance, policies designed to enhance human-
Al collaboration, which requires decision-making based on Al predictions, demanded more
detailed explanations covering aspects such as the model’s internal workings and data usage.

In contrast, policies focusing on respecting end-users may require only minimal explanations,

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements

56

Policy Setting: Congressional hearing, subpoenaed designers.
Policy Goal: Make designers provide specific, transparent proof that they’ve built their tool with end-user and
implicated user explanation in mind. Regulators value the dignity and agency of end-users and implicated users.

Requirements:

(1) Provide a guide for end-users on how to best interpret and use the tool. It must include at minimum
the following:

Highlighted
ments (excerpt)
The draft is written for a
specific regulatory setting
and states a clear policy
goal.

improve-

(A) What is the decision-making process of this tool? In order to make your explanation accessible | The purpose and audience
and understandable, it should be written in nontechnical language at an eighth grade reading | of the explanations are spec-
level. ified, as well as use cases.

(B) Describe the best scenario(s) in which to use the tool based on its significant/proven benefits. | Extended guidance is pro-
Write out what other sources users would still need to consult in those case(s), if any. [...] (i) | vided for explanation re-
Provide at least one concrete example of a best-use scenario. quirements, both global and

(C) Describe the most dangerous/most common limitations where relying only on the tool would | local (incl. goal, reading
not be appropriate. (i) Provide at least one concrete example of a scenario of misuse and how | level, examples) without re-
the tool will alert the user. stricting possible implemen-

(D) Explain to individual users how the tool made a decision in their given instance (i.e. the | tations. Explicit expecta-

case-specific explanation for a unique output of the tool). (i) Provide some example of an
explanation method you have chosen or developed to display the way the tool decided for
the individual end-user’s case. (Some example categories of explanations could be graphs,
text-based explanations, or images. Specific examples could be text-based counterfactuals,
SHAP plots.)

(2) Provide a guide on implicated user explanation. This guide would be given to end-users who
receive or are expected to act on a decision produced by the tool in a way which implicates another
person or group in a significant way (e.g. would cause a third party harm or benefit them). The guide
could explain how the tool is already built to provide explanations to final implicated actors; how the
company has ensured that the end-user or organization will provide such information to implicated
actors (and what it includes); or how the company will provide explanations to implicated actors.

(A)

Regardless, such explanations for implicated actors must include: (i) That an Al tool was used
in their decision. (ii) A very short explanation of how the tool works. (iii) What actor(s) used
the tool as part of the decision. (iv) What the decision given to the end-user by the tool was.
(v) An explanation of significant personal data used in the tool (e.g. identifying information,
sensitive financial information). (vi) An explanation of your established mechanism to report
misuse or incorrect use of the tool.

tions on what satisfies the
requirement.
Comprehensive to multiple
audiences for explanations,
requiring identifying all rel-
evant actors (§2.A).
Requires explicit reason-
ing about intermediate steps
(e.g., use cases §1.B, risk
analysis §1.C, identifying
actors §2.A) to guide analy-
sis.

Critique: This specific pol-
icy draft did not require as-
surances that explanations
are actually effective for the
purpose.

Table 4.2 Policy Draft from Week Seven and Notes Highlighting Improvements over Prior
Drafts

such as acknowledgment of the models used and information on data protection and fairness
audits. Given these variations, we determined that the purpose of each policy should also be
treated as a variable in our policy assessment experiment.

The policy assessment study requires more extensive and in-depth engagement than what
could be achieved through brief surveys, interviews, or even multi-hour user studies. This
stems from the need for data scientists to actively implement explanation techniques on an
ML product and rigorously attempt to comply with the policy for its thorough assessment. To
accommodate this necessity, we opted to situate the experiment within an educational setting.
This environment offers the advantage of conducting the study over a longer duration, such
as an 8-hour assignment, as opposed to the limited time frame typical of shorter user studies.
This extended period allows participants more comprehensive interaction with the policy and
the explanation techniques, leading to more substantive insights into the effectiveness and
practicality of the policy under scrutiny.

Carrying out this study in an educational setting necessitated careful ethical considerations.

We secured approval from the institutional IRB at the onset. We ensured the assignment

4.3 Intervention C: Guiding to Satisfy Explainable Al (XAI) Requirements 57

itself served as a valuable learning opportunity, independently of its role in our research.
Students were informed that they could opt out of the research aspect while still completing
the educational component and that their grades would not be influenced by the research
aspects. We also carefully ensured that the grading criteria for students were detached from
the research objectives. Specifically, student evaluation was based solely on their engagement
and effort, not on the quality or content of the explanations they produced. Lastly, to maintain
the integrity of the academic assessment and the privacy of student data, we refrained from
analyzing any research data until the semester concluded and all grades were finalized and
released.

After the initial setup, we framed the following research questions for our study:

* RQ#I1: What kinds of explanations, evaluations, and evidence do students provide to

comply with the policy?

* RQ#2: How does the purpose of explainability impact how students interpret and work

with the policy?

* RQ#3: How does the comprehensiveness of the guidelines impact how students inter-

pret and work with the policy?

* RQ#4: What was the impression of the students about the exercise and the effectiveness

of the explanations that they provided?

For the experiment, we selected a critical use case involving an ML product designed to
detect diabetic retinopathy, a major cause of blindness. We designed a homework assignment?
that required students to adhere to an XAI policy document applicable to this use case and
provide essential evidence and explanations. The assignment was distributed among 140
students, who were presented with six combinations of policy documents with three variations
of purpose (no purpose, Human-Al collaboration as purpose, dignity as purpose), and two
variations of comprehensiveness (low comprehensiveness with only a few lines of guidelines,
and high comprehensiveness with long and detailed guidelines). These variations were
randomly assigned to the students.

With the completion of the assignment, we collected data including students’ explanations,
source code for generating these explanations, and other forms of evidence. We also gathered
student reflections on both the challenges and benefits experienced while adhering to the
policy requirements. Moving forward, we will undertake a qualitative content analysis
and employ statistical modeling techniques to examine this data. We will seek to uncover
common patterns and themes across the provided explanations and evidence, aiming to

understand how effective the policies are in facilitating Al explainability.

3https://github.com/mlip-cmu/s2024/blob/main/assignments/I4_explainability.md

https://github.com/mlip-cmu/s2024/blob/main/assignments/I4_explainability.md

4.4 Summary 58

4.4 Summary

In this chapter, we propose three interventions designed to enhance collaboration and bridge
various knowledge boundaries. The contributions of these interventions are multifaceted and
address both theoretical frameworks and practical implementations:

* A novel approach accompanied by a tool that aids in the elicitation of model require-
ments from both data scientists and software engineers to support these stakeholders in
negotiating and aligning their needs to establish more practical requirements.

* A novel approach and corresponding tool to actively involve non-champions—that is,
stakeholders who traditionally might not prioritize RAI concerns—in considering the
importance of RAI practices during the development of models and ML products.

* A policy designed to guide software engineers and data scientists on effectively meeting
XAI requirements.

Additionally, this chapter showcases the application of diverse and carefully chosen
research methods tailored to address the unique problems associated with each intervention,
including prompt engineering on generative Al models, collaborative design exercises with
interdisciplinary teams, and action research. We also highlight different evaluation methods
used to measure the effectiveness of each intervention, including a controlled experiment in
laboratory settings, an offline experimental study, a user study, and a large-scale controlled
experiment within an educational setting. Each evaluation method was selected to best fit the

context of the intervention and the specific dimensions of success being measured.

Chapter 5

Setting Foundation for Future Research
and Education

As outlined in our challenge-identification studies (Chapter 3, N), practitioners often strug-
gle to integrate ML models into products effectively. However, researchers face significant
challenges in proposing viable interventions due to a lack of direct access to the firsthand
problems encountered by practitioners. Currently, academic researchers rely primarily on an
outside view gathered through interviews or surveys with industry practitioners, as detailed
in our meta-summary study (Section 3.2). Although some researchers conduct studies within
companies and thus gain rich [13, 69, 99, 97, 106], their findings are limited to a single con-
text and they are often under nondisclosure constraints to share details. Overall, researchers
rarely have access to the source code of ML products and hence cannot study challenges
in-depth, or design and evaluate interventions (e.g., tools and practices).

This inability to access and study ML products poses a significant impediment to ad-
vancing research in this field. This limitation has led to a wealth of academic literature
identifying challenges through professionals’ testimonies, but a dearth of research offering
scientifically-evaluated solutions or interventions at the intersection of software engineering
(SE) and ML. This was a barrier we also encountered at the outset of our research. Therefore,
to mitigate the issue of limited access to commercial ML products for academic research,
we have sought to compile a corpus of open-source ML products. This initiative aims to
provide researchers with valuable resources to study, design, and evaluate interventions more

thoroughly.

60

Table 5.1 Sample ML Products for Analysis, from the Curated Dataset of 262 ML Products:

Mobile (P1-P10), Desktop (P11-P20), and Web Applications (P21-P30)

ID Name Descrption Star Cont. Users*
P1 Text Fairy OCR scanner app 751 5 10M+
P2 Seek by iNaturalist ~App for identifying plants and animals 92 8 IM+
P3 Pocket Code App for learning programming 92 8 TM+
P4 ESP32 Al Camera ESP32-CAM processing Al tasks 82 1 1K+
P5 NotionAl MyMind App to store and search for 182 2 1K+
web/text/image
P6 Organic Maps Offline map app 4023 226 500K+
P7 VertiKin E-commerce app to search/browse prod- 74 5 N/A
ucts
P8 FlorisBoard Android keyboard 3503 76 N/A
P9 NewsBlur Personal news reader 6123 83 50K+
P10 TfLite MNIST Handwritten digits classification 214 1 N/A
P11 AWIPS Advanced weather processing system 129 6 97K/mo
P12 Audiveris Optical musical recognition app 932 16 8.7K/mo
P13 Datashare Document analysis software for journal- 438 15 1.2K/mo
ists
P14 Algoloop Algorithmic trading application 67 160 N/A
P15 Subtitle Edit Editor for video subtitles 4407 86 293K/mo
P16 DeepFacelLab Software for creating deepfakes 35566 19 N/A
P17 Faceswap Software for creating deepfakes 42623 80 297K/mo
P18 HO Helper for Hattrick online football man- 138 12 14M+
ager
P19 BigBlueButton Web conferencing system 7710 181 88K/mo
P20 PoseOSC Realtime human pose estimation 63 2 N/A
P21 OpenBB Terminal Investment research software 17481 136 94K/mo
P22 Coffee Grind Size Coffee particle analyzer 402 1 N/A
P23 Celestial Detection Classifier of celestial bodies 69 20 N/A
P24 Electricity Maps Greenhouse gas intensity visualizer 2566 268 3M+
P25 Galaxy Data intensive science for everyone 1021 255 187K/mo
P26 GridCal Power systems planning software 293 14 N/A
P27 Honkling Keyword spotting system 63 5 1.2K/mo
P28 Jitsi Meet App for video conferencing 18813 374 10M+
P29 Code.org Professional learning program for CS 712 132 82M+
P30 Basketball Analysis Analyze basketball shooting pose 781 4 N/A

*There is no reliable way to calculate the number of users; we report them using multiple ways
if available, such as downloads in google play-store, self-reported on website, or website traffic
tracker (similarweb.com) to count average monthly users (in ‘value/mo’ format)

https://github.com/renard314/textfairy
https://github.com/inaturalist/SeekReactNative
https://github.com/Catrobat/Catroid
https://github.com/longpth/ESP32CamAI
https://github.com/elblogbruno/NotionAI-MyMind
https://github.com/organicmaps/organicmaps
https://github.com/prabhakar267/vertikin
https://github.com/florisboard/florisboard
https://github.com/samuelclay/NewsBlur
https://github.com/nex3z/tflite-mnist-android
https://github.com/Unidata/awips2
https://github.com/Audiveris/audiveris
https://github.com/ICIJ/datashare
https://github.com/Capnode/Algoloop
https://github.com/SubtitleEdit/subtitleedit
https://github.com/iperov/DeepFaceLab
https://github.com/deepfakes/faceswap
https://github.com/akasolace/HO
https://github.com/bigbluebutton/bigbluebutton
https://github.com/LingDong-/PoseOSC
https://github.com/OpenBB-finance/OpenBBTerminal
https://github.com/jgagneastro/coffeegrindsize
https://github.com/ritwik12/Celestial-bodies-detection
https://github.com/electricitymap/electricitymap-contrib
https://github.com/galaxyproject/galaxy
https://github.com/SanPen/GridCal
https://github.com/castorini/honkling
https://github.com/jitsi/jitsi-meet
https://github.com/code-dot-org/code-dot-org
https://github.com/chonyy/AI-basketball-analysis

5.1 Completed Work: Research Design for Curating the Dataset 61

5.1 Completed Work: Research Design for Curating the
Dataset

Identifying open-source ML products was surprisingly difficult: searching with keywords like
“machine learning” in READMES, as in prior work collecting open-source ML projects [41],
does not work here because (a) the vast number of ML projects (libraries, notebooks, research
experiments, demos) entirely crowd out the much smaller number of ML products and (b)
ML products do not always explicitly advertise their use of machine learning, especially
when used for smaller optional features. For example, only one of the top 500 search results
on GitHub for “machine learning” is an ML product and 13 of our 30 analyzed ML products
do not mention machine learning in their README, such as video-conferencing application
P29 which uses facial expression detection as an add-on.

Instead, we explored and iteratively refined new search strategies combining domain
knowledge, code search, and manual analysis in a process that is specifically designed to
scale to search across all of GitHub. In a nutshell, our approach is based on the following
insights:

 Targeting end users, ML products have a user interface (mobile, web, desktop, com-
mand line), whereas most other ML projects do not. We rely on code search to identify
code relating to user interfaces.

* Machine learning is used in products usually through a small number of libraries
and APIs, whether to train a custom model, to load a serialized model, or to call a
remote API service. We rely on code search to identify the use of machine learning in
implementations.

* The final distinction between ML products and ML projects requires human judgment
(all our attempts at automation yielded poor accuracy). We develop heuristics to
prioritize which projects to analyze to manage scarce resources for manual analysis.

* Code search at the scale of GitHub is challenging. We carefully design a multi-step
pipeline that incrementally reduces the search space, eliminating many projects that
are not ML products with cheaper analyses before more expensive analysis steps are
required.

Each insight makes assumptions that enable the search to scale and find relevant ML
products, but each assumption may lose some ML products that do not meet them, such as
user interface mechanisms not captured (e.g., game engines) and models not detected (e.g.,
custom k-nn implementations). Our approach cannot ensure finding an exhaustive list of all
ML products — it is a best-effort attempt to collect as many ML products as possible with
reasonable resources, in the face of a very difficult search challenge (see limitations below).

5.1 Completed Work: Research Design for Curating the Dataset 62

S| O > V->[0>V~>E->P [»E

Search |GitHub API Initial Clone Product ML Manual | List of ML
String Search Filter Code Filter Clues inspection] Products

Fig. 5.1 Overall Process of ML Product Mining in GitHub

Table 5.2 Number of Retrieved Projects after Each Step

After Mobile App Desktop App Web App
android iOS js Py java C# Jjs Py java
API search 12044 10969 72793 67626 55892 15267 72793 67626 55892
Metadata filter 3358 4055 83777 36396 22802 7145 83777 36396 22802
Product filter 2296 2801 1100 1663 1909 2590 3025 8747 2255
Manual check 33 14 19 43 17 12 42 104 5

5.1.1 Search Space and Scope

We search for ML products on GitHub. GitHub is by far the most popular platform for
open-source projects, whereas more specialized platforms such as Hugging Face only host
ML models. We only include popular project repositories (over 50 stars) that have been
maintained recently (updated after 2019-01-01), and that are documented in English — con-
straints that are common in open-source research. We restrict our analysis to desktop and
web applications written in Javascript, Python, Java, and C# (the most popular languages for
such applications [92, 151]) in addition to mobile apps for Android and iOS.

5.1.2 Search Pipeline

To scale the search, we proceed in five steps (as depicted in Fig. 5.1, with increasing
per-project analysis cost in each step.

1. API Search: We start with a very scalable step to retrieve a vast overapproximation of
candidate projects with the GitHub Search API. We retrieve all GitHub repositories using any
of the four programming languages as the primary language and all repositories matching
the keywords “android” or “i0s.” We additionally restrict the search to stars and commit date,
as mentioned above. Where necessary, we partition the search space by date to overcome
GitHub’s maximum of 1000 search results. At this stage, we identified 430,902 candidate
repositories (cf. Table 5.2).

2. Metadata and readme filter: We retrieve each candidate project’s README and
GitHub metadata (including “about” description and tagged topics) through the GitHub API.

5.1 Completed Work: Research Design for Curating the Dataset 63

We exclude obvious non-product repositories by matching keywords such as “framework,”
“tutorial,” and “demo” in the description or readme. In line with similar efforts, we remove
archived and deprecated repositories (e.g., keywords “deprecated” or “obsolete”), forks, and
repositories with non-English descriptions (using an off-the-shelf model [100]). We manually
validated a random set of 100 filtered projects finding no incorrectly filtered projects. A total
of 300,508 repositories remained after applying this filter.

3. Product filter: To detect user interfaces, we rely on code search, performed locally
after cloning each candidate repository. We curated a list of code fragments indicative of 130
common frameworks for user interfaces, such as “com.android.application” in a gradle.build
file for Android mobile applications, “import javax.swing” for Java desktop applications, and
“from flask import Flask” for web applications in Python. We remove repositories that do not
contain any of these code fragments, leaving us with 26,386 potential products for further
analysis.

4. ML filter: To identify the use of machine learning, we again rely on code search, based
on curated lists of code fragments indicative of ML libraries and APIs. We count occurrences
of calls to any of 99 ML libraries or APIs (e.g., “import caffe’’) and of serialized models
(e.g., files with .tflite, and .mlmodel extensions). In addition, as a noisy last resort, we count
occurrences of 20 ML keywords, such as “machine learning” and “NLP” in any source or text
files (including comments and documentation) to catch less common libraries and custom
implementations. At this point, 11,257 projects pass at least one ML-related filter.

5. Manual inspection: The final step with by far the highest per-repository cost is to
manually validate whether a repository is an ML product. One or more authors with extensive
expertise in ML products inspected the repository, its description, and (when needed) its
code to judge whether the repository is indeed an ML product — this typically took 30
seconds to 20 minutes per repository. Our definition of ML products in Sec. 2 is the result of
multiple iterations and refinement, for example, establishing requirements for purpose and
documentation, for which we discussed 272 early inspected projects as a group (of which we
considered 94 to be ML products) to arrive at a stable definition which provided us with a
high inter-rater reliability (n=40, kappa=0.77). A few repositories near the decision boundary
were discussed by all authors until a unanimous consensus was reached. We inspected
about 4000 of the 11,257 remaining repositories, prioritizing our resources based on match
counts for our ML filters, stratified product category, language, and ML filter. In each strata,
we stopped when we reached 30 consecutive false positive repositories, for example after
inspecting 216 Android mobile apps.

5.2 The Open-Source ML Product Dataset 64

5.1.3 Limitations and Threats to Validity

To make the search feasible we had to make various compromises, arriving at the described
design. Given the various heuristics, our approach represents a best-effort attempt and cannot
claim producing an exhaustive or complete list of ML products. As discussed, we may have
missed ML products in other languages, using other GUI frameworks, or less common ML
libraries. Additionally, our approach involved manual inspection, which, despite best efforts,
opens the possibility of human error and subjectivity.

Our search heuristics prioritize false positives over false negatives, and we designed our
approach accepting low precision (discarding many repositories in the last manual validation
step) to ensure high recall. While we would have preferred to formally evaluate recall (i.e.,
whether we missed any ML products) by comparing our dataset against any existing ground-
truth dataset of ML products, such a dataset does not exist. As a substitute, we attempted
to collect ML products independently by seeking input from industry practitioners through
platforms like Quora, Reddit, LinkedIn, Twitter, and a 32k-member Slack channel in the
field of data science; but aside from numerous replies expressing interest in our dataset, we
only received suggestions for two repositories, both of which we determined not to be ML
products according to our definition. Additionally, we compared our dataset to other existing
datasets of ML projects [41, 155, 31, 137] but did not find any additional repositories that
satisfy our definition of ML products in those datasets. In fact, those datasets only contained
a total of four ML products, all of which we detected in our dataset. While all this raises our

confidence, we cannot formally assess recall.

5.2 The Open-Source ML Product Dataset

In total, we found 262 ML products (cf. Table 5.2, full dataset available at [136]). Average
ML product in our corpus has 1495 stars, 28 contributors, and is 325MB in size. Over half of
the ML products are written in Python; most are web applications.

The dataset comprises a diverse range of products, some of which have a significantly
larger number of users and a more professional look than others. For instance, Seek (P2
in Table 5.1) is a mobile app for identifying plants and animals using image recognition,
downloaded over 1 million times and reviewed by over 38k users with robust support from
the established iNaturalist community, who maintains a dedicated website and continuously
improves and maintains the app. In contrast, NotionAl MyMind (P5), an Android app
developed by a single contributor, uses an ML classifier to automatically tag images and
articles, with a simple user interface, rare updates, and under 5,000 downloads from Play

Store. Approximately half of the products in our dataset have a professional presentation like

5.3 Findings from a Qualitative and Quantitative Analysis 65

Seek; those generally have more stars and a larger codebase. The others present startup-style

personal-interest projects released as a product.

5.3 Findings from a Qualitative and Quantitative Analysis

We qualitatively and quantitatively analyzed a sample of 30 open-source ML products from
our dataset to address six broad research questions, focusing on aspects such as collaboration
and development practices. Our analysis yielded 21 findings, including limited involvement
of data scientists in many ML products and unusually low modularity between ML and
non-ML code. To keep the proposal short, we have opted not to include the detailed findings

in this section. Interested readers can refer to the pre-print of the paper in [89].

Chapter 6

Conclusion and Proposed Timeline

As outlined in Chapter 1 and illustrated in Figure 1.1, my research contributions are organized
into three primary thrusts: identifying challenges, designing interventions to enhance collab-
oration, and conducting some foundational work to support future research and education.
I have successfully completed the first and third thrusts and am currently focusing on the
second thrust. In this phase, I am conducting three studies dedicated to designing effec-
tive interventions to facilitate better interdisciplinary collaboration. I discuss my proposed
approaches for the interventions in Chapter 4, with the third intervention already partially
complete.

For clarity on the progression of this work, Figure 6.1 outlines the timeline for the
remaining tasks associated with the interventions and the finalization of my thesis.

A
g Implement model
1

testing process (Sec. 4.1); interviews
Co-teaching class Write dissertation

Spring 2025 : Fall 2025

Job application +

Fall 2024 : Summer 2025

Qualitative analysis of policy Prepare job app. materials;

responses (Sec. 4.3), tool's Conduct user study on
experimental evaluation and user testing process (Sec. 4.1)
study (Sec. 4.2)

Fig. 6.1 Thesis Timeline

References

[1]

(2]

[3]

[4]

[8]

Adadi, A. and Berrada, M. 2018. Peeking Inside the Black-Box: A Survey on Explain-
able Artificial Intelligence (XAl). IEEE Access. 6, (2018), 52138-52160.

Ahmad, K., Abdelrazek, M., Arora, C., Bano, M. and Grundy, J. 2023. Require-
ments engineering for artificial intelligence systems: A systematic mapping study.
Information and Software Technology. 158, (2023), 107176.

Akkerman, S.F. and Bakker, A. 2011. Boundary Crossing and Boundary Objects.
Review of educational research. 81, 2 (2011), 132—-169.

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N.,
Nushi, B. and Zimmermann, T. 2019. Software Engineering for Machine Learning: A
Case Study. In Proc. 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP) (2019), 291-300.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh,
J., Igbal, S., Bennett, P.N., Inkpen, K., Teevan, J., Kikin-Gil, R. and Horvitz, E.
2019. Guidelines for Human-Al Interaction. In Proc. CHI Conf. on Human Factors in
Computing Systems (2019), 1-13.

Andrade, H., Lwakatare, L.E., Crnkovic, I. and Bosch, J. 2019. Software Challenges
in Heterogeneous Computing: A Multiple Case Study in Industry. In Proc. 45th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA)
(2019), 148-155.

Arbelaez Ossa, L., Starke, G., Lorenzini, G., Vogt, J.E., Shaw, D.M. and EI-
ger, B.S. 2022. Re-focusing explainability in medicine. Digital Health. 8, (2022).
DOTI:https://doi.org/10.1177/20552076221074488.

Arnold, M., Piorkowski, D., Reimer, D., Richards, J., Tsay, J., Varshney, K.R., Bel-
lamy, R.K.E., Hind, M., Houde, S., Mehta, S., Mojsilovic, A., Nair, R., Ramamurthy,

http://dx.doi.org/10.1177/20552076221074488

References 68

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K.N. and Olteanu, A. 2019. FactSheets: Increasing trust in Al services through sup-
plier’s declarations of conformity. IBM journal of research and development. 63, 4/5
(2019), 6:1-6:13.

Arpteg et al, A. 2018. Software Engineering Challenges of Deep Learning. Proc. 44th
Euromicro Conf. on SEAA (2018), 50-59.

Ashmore, R., Calinescu, R. and Paterson, C. 2019. Assuring the Machine Learning
Lifecycle: Desiderata, Methods, and Challenges. arXiv 1905.04223.

Baijens, J., Helms, R. and Iren, D. 2020. Applying Scrum in Data Science Projects. In
Proc. 22nd Conference on Business Informatics (CBI) (2020), 30-38.

Barredo Arrieta, A., Diaz-Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R. and Herrera, F.
2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible Al. Inf. Fusion. 58, (2020), 82—115.

Bernardi, L., Mavridis, T. and Estevez, P. 2019. 150 Successful Machine Learning
Models: 6 Lessons Learned at Booking.com. In Proc. 25th Int’l Conf. on ACM
SIGKDD (2019), 1743-1751.

Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R.,
Moura, J.M.F. and Eckersley, P. 2020. Explainable machine learning in deployment.
In Proc. Conference on Fairness, Accountability, and Transparency (2020), 648-657.

Boenisch, F.,, Battis, V., Buchmann, N. and Poikela, M. 2021. “I Never Thought About
Securing My Machine Learning Systems”: A Study of Security and Privacy Awareness
of Machine Learning Practitioners. In Proc. Mensch und Computer (2021), 520-546.

Boyd, K.L. 2021. Datasheets for Datasets help ML Engineers Notice and Understand
Ethical Issues in Training Data. In Proc. ACM on Human-Computer Interaction. S,
CSCW2 (2021), 1-27.

Brandstédter, S. and Sonntag, K. 2016. Interdisciplinary Collaboration. Advances in
Ergonomic Design of Systems, Products and Processes (2016), 395-4009.

Braude, E.J. and Bernstein, M.E. 2016. Software Engineering: Modern Approaches,
Second Edition. Waveland Press.

References 69

[19] Breck, E., Cai, S., Nielsen, E., Salib, M. and Sculley, D. 2017. The ML test score:
A rubric for ML production readiness and technical debt reduction. In Proc. IEEE
International Conference on Big Data (2017), 1123-1132.

[20] Buginca, Z., Pham, C.M., Jakesch, M., Ribeiro, M.T., Olteanu, A. and Amershi, S.
2023. AHA!: Facilitating Al Impact Assessment by Generating Examples of Harms.
arXiv [cs.HC].

[21] Cai, C.J., Winter, S., Steiner, D., Wilcox, L. and Terry, M. 2019. “Hello AI”’: Un-
covering the onboarding needs of medical practitioners for human-Al collaborative
decision-making. In Proc. ACM Hum. Comput. Interact. 3, CSCW (2019), 1-24.

[22] Carlile, P.R. 2002. A Pragmatic View of Knowledge and Boundaries: Boundary
Objects in New Product Development. Organization Science. 13, 4 (2002), 442—455.

[23] Carlile, P.R. 2004. Transferring, Translating, and Transforming: An Integrative Frame-
work for Managing Knowledge Across Boundaries. Organization Science. 15, 5
(2004), 555-568.

[24] Chang, J. and Custis, C. 2022. Understanding Implementation Challenges in Ma-
chine Learning Documentation. Equity and Access in Algorithms, Mechanisms, and
Optimization (2022), 1-8.

[25] Chotisarn, N., Merino, L., Zheng, X., Lonapalawong, S., Zhang, T., Xu, M. and Chen,
W. 2020. A systematic literature review of modern software visualization. Journal of
visualization / the Visualization Society of Japan. 23, 4 (2020), 539-558.

[26] Colaner, N. 2022. Is explainable artificial intelligence intrinsically valuable? Al &
society. 37, 1 (2022), 231-238.

[27] Costanza-Chock, S. 2020. Design Justice: Community-Led Practices to Build the
Worlds We Need. MIT Press.

[28] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. 2012. Social coding in GitHub: trans-
parency and collaboration in an open software repository. In Proc. ACM conference
on Computer Supported Cooperative Work (2012), 1277-1286.

[29] Davis, J. and Daniels, R. 2016. Effective DevOps: Building a Culture of Collaboration,
Affinity, and Tooling at Scale. O’Reilly Media, Inc.

[30] Dignum, V. 2019. Responsible artificial intelligence: how to develop and use Al in a

responsible way. Springer International Publishing.

References 70

[31] Dilhara, M., Ketkar, A. and Dig, D. 2021. Understanding Software-2.0: A Study
of Machine Learning Library Usage and Evolution. ACM Transactions on Software
Engineering and Methodology. 30, 4 (2021), 1-42.

[32] Dove, G., Halskov, K., Forlizzi, J. and Zimmerman, J. 2017. UX Design Innovation:
Challenges for Working with Machine Learning as a Design Material. In Proc. CHI
Conference on Human Factors in Computing Systems (2017), 278-288.

[33] Ehsan, U., Passi, S., Vera Liao, Q., Chan, L., Lee, I.-H., Muller, M. and Riedl, M.O.
2021. The Who in Explainable Al: How Al Background Shapes Perceptions of Al
Explanations. arXiv [cs. HC].

[34] Espinosa, J.A., Slaughter, S.A., Kraut, R.E. and Herbsleb, J.D. 2007. Team Knowledge
and Coordination in Geographically Distributed Software Development. Journal of
Management Information Systems. 24, 1 (2007), 135-169.

[35] Evolving Microsoft Security Development Lifecycle (SDL):
How continuous SDL can help you build more secure soft-
ware: https://www.microsoft.com/en-us/security/blog/2024/03/07/

evolving-microsoft-security-development-lifecycle- sdl-how-continuous- sdl-can- help-you-build-more

[36] Faan, M.S.P. and Aprn, J.B.P. 2006. Handbook for Synthesizing Qualitative Research.
Springer Publishing Company.

[37] Failure rates for analytics, Al, and big data projects = 85%
- yikes! 2019. https://designingforanalytics.com/resources/
failure-rates-for-analytics-bi-iot-and-big-data-projects-85-yikes/ .

[38] Felizardo, K.R., Mendes, E., Kalinowski, M., Souza, E.F. and Vijaykumar, N.L. 2016.
Using Forward Snowballing to update Systematic Reviews in Software Engineering.

In Proc. 10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (2016), 1-6.

[39] Gartner Says Nearly Half of CIOs Are Planning to Deploy Artifi-
cial Intelligence: https://www.gartner.com/en/newsroom/press-releases/

2018-02- 13- gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence.

[40] Golendukhina, V., Lenarduzzi, V. and Felderer, M. 2022. What is software quality for
Al engineers? Towards a thinning of the fog. In Proc. st International Conference on
Al Engineering: Software Engineering for Al (2022), 1-9.

https://www.microsoft.com/en-us/security/blog/2024/03/07/evolving-microsoft-security-development-lifecycle-sdl-how-continuous-sdl-can-help-you-build-more-secure-software/
https://www.microsoft.com/en-us/security/blog/2024/03/07/evolving-microsoft-security-development-lifecycle-sdl-how-continuous-sdl-can-help-you-build-more-secure-software/
https://designingforanalytics.com/resources/failure-rates-for-analytics-bi-iot-and-big-data-projects-85-yikes/
https://designingforanalytics.com/resources/failure-rates-for-analytics-bi-iot-and-big-data-projects-85-yikes/
https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence
https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence

References 71

[41]

[42]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

Gonzalez et al, D. 2020. The State of the ML-universe: 10 Years of Artificial Intel-
ligence & Machine Learning Software Development on GitHub. In Proc. 17th Int’l
Conf. on MSR (2020), 431-442.

Haakman, M., Cruz, L., Huijgens, H. and van Deursen, A. 2021. Al Lifecycle Models
Need To Be Revised. An Exploratory Study in Fintech. Empirical Software Engineer-
ing. 26,5 (2021), 1-29.

Habibullah, K.M., Gay, G. and Horkoff, J. 2023. Non-functional requirements for
machine learning: understanding current use and challenges among practitioners.
Requirements Engineering. 28, 2 (2023), 283-316.

Harsh, S. 2011. Purposeful Sampling in Qualitative Research Synthesis. Qualitative
Research Journal. 11, 2 (2011), 63-75.

Hill, C., Bellamy, R., Erickson, T. and Burnett, M. 2016. Trials and tribulations of
developers of intelligent systems: A field study. In Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) (2016), 162—-170.

Hohman, F., Head, A., Caruana, R., DeLine, R. and Drucker, S.M. 2019. Gamut:
A Design Probe to Understand How Data Scientists Understand Machine Learning
Models. In Proc. CHI Conference on Human Factors in Computing Systems (2019),
1-13.

Holstein, K., Wortman Vaughan, J., Daumé, H., Dudik, M. and Wallach, H. 2019.
Improving Fairness in Machine Learning Systems: What Do Industry Practitioners
Need? In Proc. CHI Conference on Human Factors in Computing Systems (2019),
1-16.

Hopkins, A. and Booth, S. 2021. Machine Learning Practices Outside Big Tech:
How Resource Constraints Challenge Responsible Development. In Proc. AAAI/ACM
Conference on Al, Ethics, and Society (2021), 134—-145.

Hopkins, A. and Booth, S. 2021. Machine learning practices outside big tech: How re-
source constraints challenge responsible development. In Proc. AAAI/ACM Conference
on Al, Ethics, and Society (2021).

Huang, X., Zhang, H., Zhou, X., Babar, M.A. and Yang, S. 2018. Synthesizing quali-
tative research in software engineering: a critical review. In Proc. 40th International
Conference on Software Engineering (2018), 1207-1218.

References 72

[51]

[52]

[53]

[55]

[56]

[57]

[58]

[59]

[60]

Hudson, W. 2013. Card Sorting. The Encyclopedia of Human-Computer Interaction,
2nd Ed. The Interaction Design Foundation.

Hukkelberg, I. and Rolland, K. 2020. Exploring Machine Learning in a Large Govern-
mental Organization: An Information Infrastructure Perspective. European Conference

on Information Systems. (2020).

Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A. and Tonella, P.
2020. Taxonomy of real faults in deep learning systems. In Proc. 42nd Int’l Conf. on
Software Engineering (ICSE) (2020).

Hummer, W., Muthusamy, V., Rausch, T., Dube, P., El Maghraoui, K., Murthi, A.
and Oum, P. 2019. ModelOps: Cloud-Based Lifecycle Management for Reliable and
Trusted Al In Proc. 2019 IEEE International Conference on Cloud Engineering
(IC2E) (2019), 113-120.

Hynes, N., Sculley, D. and Terry, M. 2017. The data linter: Lightweight, automated
sanity checking for ml data sets. NIPS MLSys Workshop. 1, (2017), 5.

Ishikawa, F. and Yoshioka, N. 2019. How do engineers perceive difficulties in en-
gineering of machine-learning systems? - questionnaire survey. In Proc. Joint 7th
International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th
International Workshop on Software Engineering Research and Industrial Practice
(SER&IP) (2019), 2-9.

Jain, R. and Suman, U. 2015. A Systematic Literature Review on Global Software
Development Life Cycle. SIGSOFT Softw. Eng. Notes. 40, 2 (2015), 1-14.

John, M.M., Olsson, H.H. and Bosch, J. 2021. Towards MLOps: A Framework and
Maturity Model. In Proc. 47th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) (2021), 1-8.

Kistner, C. and Kang, E. 2020. Teaching Software Engineering for Al-Enabled Sys-
tems. In Proc. 42nd Int’l Conf. on Software Engineering: Software Engineering
Education and Training (ICSE-SEET) (2020), 45-48.

Katal, A., Bajoria, V. and Dahiya, S. 2019. DevOps: Bridging the gap between
Development and Operations. In Proc. 3rd International Conference on Computing
Methodologies and Communication (ICCMC) (2019), 1-7.

References 73

[61] Keele, S. 2007. Guidelines for performing systematic literature reviews in software
engineering. Technical Rep., Ver. 2.3 EBSE Tech. Report. EBSE.

[62] Kim, M., Zimmermann, T., DeLine, R. and Begel, A. 2018. Data Scientists in Software
Teams: State of the Art and Challenges. IEEE Transactions on Software Engineering.
44, 11 (2018), 1024-1038.

[63] Kumar, R.S.S., Nystrom, M., Lambert, J., Marshall, A., Goertzel, M., Comissoneru,
A., Swann, M. and Xia, S. 2020. Adversarial Machine Learning - Industry Perspectives.
In Proc. IEEE Security and Privacy Workshops (SPW). (2020), 69-75.

[64] Laato, S., Birkstedt, T., Miantymiki, M., Minkkinen, M. and Mikkonen, T. 2022.
Al governance in the system development life cycle: insights on responsible ma-
chine learning engineering. In Proc. Ist International Conference on Al Engineering:
Software Engineering for Al (2022), 113-123.

[65] Lamsweerde, A.V. 2009. Requirements engineering: From system goals to UML
models to software specifications. John Wiley & Sons, Ltd.

[66] Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J. and Kim, H. 2023. Few-shot
is enough: exploring ChatGPT prompt engineering method for automatic question

generation in english education. Education and information technologies. (2023).

[67] Lewis, G.A., Bellomo, S. and Ozkaya, I. 2021. Characterizing and Detecting Mismatch
in Machine-Learning-Enabled Systems. In Proc. IEEE/ACM 1st Workshop on Al
Engineering-Software Engineering for AI (WAIN) (2021), 133-140.

[68] Lewis, G.A., Ozkaya, I. and Xu, X. 2021. Software Architecture Challenges for ML
Systems. In Proc. International Conference on Software Maintenance and Evolution
(ICSME) (2021), 634-638.

[69] Lin, J. and Kolcz, A. 2012. Large-scale machine learning at twitter. In Proc. ACM
SIGMOD Int’l Conf. on Management of Data (2012), 793-804.

[70] Li, S., Guo, J., Lou, J.-G., Fan, M., Liu, T. and Zhang, D. 2022. Testing machine learn-
ing systems in industry: an empirical study. In Proc. 44th International Conference on
Software Engineering: Software Engineering in Practice (2022), 263-272.

[71] Liu, H., Eksmo, S., Risberg, J. and Hebig, R. 2020. Emerging and Changing Tasks
in the Development Process for Machine Learning Systems. In Proc. International
Conference on Software and System Processes (2020), 125-134.

References 74

[72]

[73]

[74]

[76]

[77]

[78]

[79]

[80]

Lopez, G. and Guerrero, L.A. 2017. Awareness Supporting Technologies used in
Collaborative Systems: A Systematic Literature Review. In Proc. ACM Conference on

Computer Supported Cooperative Work and Social Computing (2017), 808—820.

Lundberg, S.M. and Lee, S.-I. 2017. A Unified Approach to Interpreting Model
Predictions. Advances in Neural Information Processing Systems (NIPS). 30, (2017).

Luria, M. 2023. Co-Design Perspectives on Algorithm Transparency Reporting: Guide-
lines and Prototypes. In Proc. ACM Conference on Fairness, Accountability, and
Transparency (2023), 1076-1087.

Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H. and Crnkovic, I. 2019. A taxonomy
of software engineering challenges for machine learning systems: An empirical

investigation. In Proc. International Conference on Agile Software Development

(2019), 227-243.

Lwakatare, L.E., Raj, A., Crnkovic, 1., Bosch, J. and Olsson, H.H. 2020.
Large-scale machine learning systems in real-world industrial settings: A review
of challenges and solutions. Information and software technology. 127, (2020).
DOTI:https://doi.org/10.1016/j.infsof.2020.106368.

Madaio, M. A., Stark, L., Wortman Vaughan, J. and Wallach, H. 2020. Co-Designing
Checklists to Understand Organizational Challenges and Opportunities around Fair-
ness in Al. In Proc. CHI Conf. on Human Factors in Computing Systems (2020),
1-14.

Maftey, K.R., Dotterrer, K., Niemann, J., Cruickshank, I., Lewis, G.A. and Kéistner,
C. 2023. MLTEing Models: Negotiating, Evaluating, and Documenting Model and
System Qualities. arXiv [cs.SE].

Mikinen, S., Skogstrom, H., Laaksonen, E. and Mikkonen, T. 2021. Who Needs
MLOps: What Data Scientists Seek to Accomplish and How Can MLOps Help? In
Proc. IEEE/ACM 1st Workshop on Al Engineering - Software Engineering for Al
(WAIN) (2021), 109-112.

Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez Orallo, J., Kull, M.,
Lachiche, N., Ramirez Quintana, M.J. and Flach, P.A. 2020. CRISP-DM twenty years
later: From data mining processes to data science trajectories. IEEE transactions on
knowledge and data engineering. 33, 8 (2020), 3048-3061.

http://dx.doi.org/10.1016/j.infsof.2020.106368

References 75

[81] McGraw, G., Figueroa, H., Shepardson, V. and Bonett, R. 2020. An architectural
risk analysis of machine learning systems: Toward more secure machine learning.
Berryville Institute of Machine Learning. 23, (2020).

[82] Meyes, R., Lu, M., de Puiseau, C.W. and Meisen, T. 2019. Ablation Studies in
Artificial Neural Networks. arXiv [cs.NE].

[83] Microsoft-RAI-Impact-Assessment-Template.pdt: https://
blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/
Microsoft-RAI-Impact-Assessment-Template.pdf .

[84] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer,
E., Raji, I.D. and Gebru, T. 2019. Model Cards for Model Reporting. In Proc. Confer-
ence on Fairness, Accountability, and Transparency (2019), 220-229.

[85] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer,
E., Raji, I.D. and Gebru, T. 2019. Model Cards for Model Reporting. In Proc. Conf.
on Fairness, Accountability, and Transparency (2019), 220-229.

[86] Molnar, C. 2020. Interpretable Machine Learning. Lulu.com.

[87] Myllyaho, L., Raatikainen, M., Ménnisto, T., Nurminen, J.K. and Mikkonen, T. 2022.
On misbehaviour and fault tolerance in machine learning systems. Journal of Systems
and Software. 183, (2022), 111096.

[88] Nahar et al, N. 2022. Collaboration Challenges in Building ML-Enabled Systems:
Communication, Documentation, Engineering, and Process. Proc. 44th Int’l Conf. on
Software Engineering (2022), 413-425.

[89] Nahar, N., Zhang, H., Lewis, G., Zhou, S. and Kistner, C. 2023. A Dataset and
Analysis of Open-Source Machine Learning Products. arXiv [cs.SE].

[90] Nahar, N., Zhang, H., Lewis, G., Zhou, S. and Kistner, C. 2023. A Meta-Summary
of Challenges in Building Products with ML Components — Collecting Experiences

from 4758+ Practitioners. In Proc. 2nd International Conference on Al Engineering —
Software Engineering for AI (CAIN) (2023), 171-183.

[91] Namvar, M., Intezari, A., Akhlaghpour, S. and Brienza, J.P. 2022. Beyond effective use:
Integrating wise reasoning in machine learning development. International journal of
information management. (2022), 102566.

https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Template.pdf
https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Template.pdf
https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Template.pdf

References 76

[92] Nehra, M. Top 10 Programming Languages for Desktop Apps in 2022. Decipher Zone.

[93] Nikhil, K., Anandayuvaraj, D., Detti, A., Lee Bland, F., Rahaman, S. and Davis,
J.C. 2022. “If security is required”: Engineering and Security Practices for Machine
Learning-based 10T Devices. In Proc. 4th International Workshop on Software Engi-
neering Research and Practices for the loT (SERP410T) (2022), 1-8.

[94] Nushi, B., Kamar, E., Horvitz, E. and Kossmann, D. 2017. On human intellect and
machine failures: troubleshooting integrative machine learning systems. In Proc.
Thirty-First AAAI Conference on Artificial Intelligence (2017), 1017-1025.

[95] O’Leary, K. and Uchida, M. 2020. Common problems with creating machine learning
pipelines from existing code. In Proc of 3rd Conf. on Machine Learning and Systems
(MLSys) (2020).

[96] Ozkaya, I. 2020. What Is Really Different in Engineering Al-Enabled Systems? /IEEE
Software. 37, 4 (2020), 3-6.

[97] Passi, S. and Jackson, S.J. 2018. Trust in Data Science: Collaboration, Translation,
and Accountability in Corporate Data Science Projects. In Proc. ACM on Human-
Computer Interaction. 2, CSCW (2018), 1-28.

[98] Passi, S. and Sengers, P. 2020. Making data science systems work. Big Data & Society.
7,2 (2020).

[99] Passi, S. and Sengers, P. 2020. Making data science systems work. Big Data and
Society. 7, 2 (2020), 205395172093960.

[100] Perspective API: Using Machine Learning to Reduce Toxicity Online: 2017. https:

//www.perspectiveapi.com/ .

[101] Piorkowski, D., Park, S., Wang, A.Y., Wang, D., Muller, M. and Portnoy, F. 2021. How
Al Developers Overcome Communication Challenges in a Multidisciplinary Team: A
Case Study. In Proc. ACM on Human-Computer Interaction 5.CSCWI (2021), 1-25.

[102] Polyzotis, N., Roy, S., Whang, S.E. and Zinkevich, M. 2018. Data Lifecycle Chal-
lenges in Production Machine Learning: A Survey. ACM SIGMOD Record. 47, 2
(2018), 17-28.

[103] Polyzotis, N., Roy, S., Whang, S.E. and Zinkevich, M. 2017. Data Management
Challenges in Production Machine Learning. In Proc. ACM Int’l Conf. on Management
of Data (2017), 1723-1726.

https://www.perspectiveapi.com/
https://www.perspectiveapi.com/

References 77

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Prompt Engineering Guide: https://www.promptingguide.ai/.

Rahimi, M., Guo, J.L.C., Kokaly, S. and Chechik, M. 2019. Toward Requirements
Specification for Machine-Learned Components. In Proc. 27th International Require-
ments Engineering Conference Workshops (REW) (2019), 241-244.

Rahman et al, M.S. 2019. Machine Learning Software Engineering in Practice: An
Industrial Case Study. arXiv [cs.SE].

Rahman, M.S., Khomh, F., Hamidi, A., Cheng, J., Antoniol, G. and Washizaki, H.
2021. Machine Learning Application Development: Practitioners’ Insights. arXiv
[cs.SE].

Rakova, B., Yang, J., Cramer, H. and Chowdhury, R. 2020. Where Responsible
Al meets Reality: Practitioner Perspectives on Enablers for shifting Organizational
Practices. In Proc. ACM on Human-Computer Interaction (2020), 1-23.

responsible-development-of-ai.pdf: https://ai.google/ static/documents/
responsible-development-of-ai.pdf .

Ribeiro, D.M., Cardoso, M., da Silva, F.Q.B. and Franca, C. 2014. Using qualita-
tive metasummary to synthesize empirical findings in literature reviews. In Proc.

8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (2014), 1-4.

Rismani, S., Shelby, R., Smart, A., Jatho, E., Kroll, J., Moon, A. and Rostamzadeh,
N. 2022. From plane crashes to algorithmic harm: applicability of safety engineering
frameworks for responsible ML. arXiv [cs.HC].

Riungu-Kalliosaari, L., Kauppinen, M. and Ménnisto, T. 2017. What Can Be Learnt
from Experienced Data Scientists? A Case Study. Product-Focused Software Process
Improvement (2017), 55-70.

Rong, Y., Leemann, T., Nguyen, T.-T., Fiedler, L., Qian, P., Unhelkar, V., Seidel,
T., Kasneci, G. and Kasneci, E. 2023. Towards Human-Centered Explainable Al: A
Survey of User Studies for Model Explanations. IEEE transactions on pattern analysis
and machine intelligence. PP, (2023).

Rudin, C. 2019. Stop Explaining Black Box Machine Learning Models for High
Stakes Decisions and Use Interpretable Models Instead. Nature machine intelligence.
1,5 (2019), 206-215.

https://www.promptingguide.ai/
https://ai.google/static/documents/responsible-development-of-ai.pdf
https://ai.google/static/documents/responsible-development-of-ai.pdf

References 78

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Sagor, R. 2011. The Action Research Guidebook: A Four-Stage Process for Educators

and School Teams. Corwin Press.

Salay, R., Queiroz, R. and Czarnecki, K. 2017. An Analysis of ISO 26262: Using

Machine Learning Safely in Automotive Software. arXiv [cs.Al].

Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P. and Aroyo, L.M.
2021. “Everyone wants to do the model work, not the data work™: Data Cascades in

High-Stakes Al. In Proc. CHI Conference on Human Factors in Computing Systems
(2021), 1-15.

Sandelowski, M., Barroso, J. and Voils, C.I. 2007. Using qualitative metasummary
to synthesize qualitative and quantitative descriptive findings. Research in nursing &
health. 30, 1 (2007), 99-111.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,
Young, M., Crespo, J.-F. and Dennison, D. 2015. Hidden Technical Debt in Machine
Learning Systems. Adv. in Neu. Info. Proc. Sys. 28, (2015), 2503-2511.

Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J. and Zhou, Y. 2011.
Detecting adversarial advertisements in the wild. In Proc. 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (2011), 274-282.

Selbst, A.D. and Barocas, S. 2018. The intuitive appeal of explainable machines. SSRN
Electronic Journal. (2018), 1085.

Sendak, M.P. et al. 2020. Real-World Integration of a Sepsis Deep Learning Technol-

ogy Into Routine Clinical Care: Implementation Study. JMIR medical informatics. 8,
7 (2020), e15182.

Serban, A., van der Blom, K., Hoos, H. and Visser, J. 2020. Adoption and Effects of
Software Engineering Best Practices in Machine Learning. In Proc. 14th ACM/IEEE In-

ternational Symposium on Empirical Software Engineering and Measurement (ESEM)

(2020), 1-12.

Serban, A., van der Blom, K., Hoos, H. and Visser, J. 2021. Practices for Engineering
Trustworthy Machine Learning Applications. In Proc. 1st Workshop on Al Engineering
- Software Engineering for AI (WAIN) (2021), 97-100.

Serban, A. and Visser, J. 2022. Adapting Software Architectures to Machine Learning
Challenges. In Proc. IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER) (2022), 152—163.

References 79

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Shankar, S., Garcia, R., Hellerstein, J.M. and Parameswaran, A.G. 2022. Operational-
izing Machine Learning: An Interview Study. arXiv [cs.SE].

Shneiderman, B. 2020. Bridging the gap between ethics and practice. ACM transac-
tions on interactive intelligent systems. 10, 4 (2020), 1-31.

Siebert et al, J. 2020. Towards Guidelines for Assessing Qualities of Machine Learn-
ing Systems. Proc. 13th Int’l Conf. Quality of Information and Communications
Technology (2020), 17-31.

d. S. Nascimento, E., Ahmed, 1., Oliveira, E., Palheta, M.P., Steinmacher, I. and
Conte, T. 2019. Understanding Development Process of Machine Learning Systems:

Challenges and Solutions. In Proc. ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (2019), 1-6.

Spencer, D. 2009. Card Sorting: Designing Usable Categories. Rosenfeld Media.

Springer, A., Hollis, V. and Whittaker, S. 2018. Dice in the black box: User experiences
with an inscrutable algorithm. arXiv [cs.HC].

Strauss, A. and Corbin, J. 1994. Grounded theory methodology: An overview. Hand-
book of qualitative research. N.K. Denzin, ed. 273-285.

Strauss, A. and Corbin, J.M. 1990. Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. SAGE Publications.

Stringer, E.T. and Aragdn, A.O. 2020. Action Research. SAGE Publications.

Studer, S., Bui, T.B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S. and Mueller,
K.-R. 2021. Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology. Machine Learning and Knowledge Extraction. 3, 2 (2021),
392-413.

Supplementary Documents: A Dataset and Analysis of Open-Source Machine Learn-
ing Products: https://osf.io/gqyex/.

Tang et al, Y. 2021. An Empirical Study of Refactorings and Technical Debt in
Machine Learning Systems. In Proc. EEE/ACM 43rd international conference on
software engineering (ICSE) (2021), 238-250.

https://osf.io/gqyex/

References 80

[138] The security development lifecycle: SDL, a process for developing demonstrably
more secure software: 2006. https://download.microsoft.com/download/f/c/7/
fc7d048b-b7a5-4add-be2c-baaee38091e3/9780735622 142 _securitydevlifecycle_
chOl.pdf.

[139] Tranquillo, J. 2017. The T-Shaped Engineer. Journal of Engineering Education Trans-
formations. 30, 4 (2017), 12-24.

[140] Uchihira, N. 2022. Project FMEA for Recognizing Difficulties in Machine Learning
Application System Development. In Proc. Portland International Conference on
Management of Engineering and Technology (PICMET) (2022), 1-8.

[141] VeraLiao, Q. and Varshney, K.R. 2021. Human-Centered Explainable AI (XAI): From
Algorithms to User Experiences. arXiv [cs.Al].

[142] Villamizar et al, H. 2022. Towards Perspective-Based Specification of Machine
Learning-Enabled Systems. In Proc. 48th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA) (2022), 112-115.

[143] Vogelsang, A. and Borg, M. 2019. Requirements Engineering for Machine Learn-
ing: Perspectives from Data Scientists. In Proc. 27th International Requirements
Engineering Conference Workshops (REW) (2019), 245-251.

[144] Vogelsang, A. and Borg, M. 2019. Requirements Engineering for Machine Learning:
Perspectives from Data Scientists. In Proc. 27th Int’l Requirements Engineering
Conference Workshops (REW) (2019), 245-251.

[145] Wagstaff, K. 2012. Machine Learning that Matters. arXiv 1206.4656.

[146] Wang, D., Weisz, J.D., Muller, M., Ram, P., Geyer, W., Dugan, C., Tausczik, Y., Samu-
lowitz, H. and Gray, A. 2019. Human-AlI Collaboration in Data Science: Exploring
Data Scientists’” Perceptions of Automated Al. In Proc. ACM on Human-Computer
Interaction. 3, CSCW (2019), 1-24.

[147] Wang, J. et al. 2023. Prompt Engineering for Healthcare: Methodologies and Applica-
tions. arXiv [cs.Al].

[148] Wang, Y., Xiong, M. and Olya, H. 2020. Toward an understanding of responsible
artificial intelligence practices. In Proc. 53rd Hawaii International Conference on
System Sciences (2020), 4962—-4971.

https://download.microsoft.com/download/f/c/7/fc7d048b-b7a5-4add-be2c-baaee38091e3/9780735622142_securitydevlifecycle_ch01.pdf
https://download.microsoft.com/download/f/c/7/fc7d048b-b7a5-4add-be2c-baaee38091e3/9780735622142_securitydevlifecycle_ch01.pdf
https://download.microsoft.com/download/f/c/7/fc7d048b-b7a5-4add-be2c-baaee38091e3/9780735622142_securitydevlifecycle_ch01.pdf

References 81

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Wan, Z., Xia, X., Lo, D. and Murphy, G.C. 2019. How does Machine Learning Change
Software Development Practices? IEEE Transactions on Software Engineering. 47,9
(2019), 1857-1871.

Washizaki, H., Uchida, H., Khomh, F. and Guéhéneuc, Y.-G. 2020. Machine learning
architecture and design patterns. IEEE Software. 8, (2020).

What language are most commonly used for
web development: https://www.dotnetlanguages.net/

web-languages-what-language-are-most-commonly-used-for-web-development/.

White, J., Hays, S., Fu, Q., Spencer-Smith, J. and Schmidt, D.C. 2023. ChatGPT
Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation,
and Software Design. arXiv [cs.SE].

Why 87% of AI/ML Projects Never Make It Into Production: https.://d2ig.com/blog/

why-87-of-ai-ml-projects-never-make-it-into-production-and-how-to-fix-it.

Why do 87% of data science projects never make
it into production? 2019. https://venturebeat.com/ai/

why-do-87-of-data-science-projects-never-make-it-into-production/ .

Widyasari et al, R. 2023. NICHE: A Curated Dataset of Engineered Machine Learning
Projects in Python. arXiv [cs.SE].

Wiegers, K.E. and Beatty, J. 2013. Software Requirements. Pearson Education.

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V.X., Doshi-Velez, F., Jung, K.,
Heller, K., Kale, D., Saeed, M., Ossorio, P.N., Thadaney-Israni, S. and Goldenberg,
A. 2019. Do no harm: a roadmap for responsible machine learning for health care.
Nature medicine. 25,9 (2019), 1337-1340.

Wohlin, C. 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In Proc. 18th International Conference on

Evaluation and Assessment in Software Engineering (2014), 1-10.

Wohlrab, R., Pelliccione, P., Knauss, E. and Larsson, M. 2019. Boundary objects and
their use in agile systems engineering. Journal of software (Malden, MA). 31,5 (2019),
e2166.

https://www.dotnetlanguages.net/web-languages-what-language-are-most-commonly-used-for-web-development/
https://www.dotnetlanguages.net/web-languages-what-language-are-most-commonly-used-for-web-development/
https://d2iq.com/blog/why-87-of-ai-ml-projects-never-make-it-into-production-and-how-to-fix-it
https://d2iq.com/blog/why-87-of-ai-ml-projects-never-make-it-into-production-and-how-to-fix-it
https://venturebeat.com/ai/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/ai/why-do-87-of-data-science-projects-never-make-it-into-production/

References 82

[160]

[161]

[162]

[163]

[164]

Yang, Q., Suh, J., Chen, N.-C. and Ramos, G. 2018. Grounding Interactive Machine
Learning Tool Design in How Non-Experts Actually Build Models. In Proc. Conf. on
Designing Interactive Systems (2018), 573-584.

Zdanowska, S. and Taylor, A.S. 2022. A study of UX practitioners roles in designing
real-world, enterprise ML systems. In Proc. CHI Conference on Human Factors in
Computing Systems (2022), 1-15.

Zhang, A.X., Muller, M. and Wang, D. 2020. How do data science workers collaborate?
Roles, workflows, and tools. In Proc. ACM Hum. Comput. Interact. 4, CSCW1 (2020),
1-23.

Zhang, X., Yang, Y., Feng, Y. and Chen, Z. 2019. Software Engineering Practice in
the Development of Deep Learning Applications. arXiv [cs.SE].

Regulating Explainability in Machine Learning Applications — Observations from a
Policy Design Experiment. In Proc. ACM Conference on Fairness, Accountability, and
Transparency (ACM FAccT).

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Thesis Statement
	1.2 Organization and Contributions

	2 Background
	2.1 Machine Learning (ML) Products
	2.1.1 ML Models vs ML Products
	2.1.2 How ML Challenges Traditional Software Development
	2.1.3 Qualities of Concern

	2.2 Collaboration
	2.2.1 Knowledge Boundaries
	2.2.2 Past Collaboration Success Stories: DevOps and MLOps
	2.2.3 Collaboration with ML

	3 Identifying Challenges
	3.1 Identification A: Interview Study of Collaboration Challenges in Building ML Products
	3.1.1 Completed Work: Research Design
	3.1.2 Findings for the Requirements Collaboration Point
	3.1.3 Discussion

	3.2 Identification B: Meta-Summary of Challenges in Building ML Products
	3.2.1 Completed Work: Research Design
	3.2.2 Findings
	3.2.3 Discussion

	3.3 Summary

	4 Designing Interventions
	4.1 Intervention A: Supporting Elicitation of Model Requirements
	4.1.1 Problem Scoping
	4.1.2 Proposed Work: Research Design

	4.2 Intervention B: Encouraging Engagement in Responsible AI (RAI)
	4.2.1 Problem Scoping and Related Work
	4.2.2 Proposed Work: Research Design

	4.3 Intervention C: Guiding to Satisfy Explainable AI (XAI) Requirements
	4.3.1 Related Work
	4.3.2 Ongoing Work: Research Design

	4.4 Summary

	5 Setting Foundation for Future Research and Education
	5.1 Completed Work: Research Design for Curating the Dataset
	5.1.1 Search Space and Scope
	5.1.2 Search Pipeline
	5.1.3 Limitations and Threats to Validity

	5.2 The Open-Source ML Product Dataset
	5.3 Findings from a Qualitative and Quantitative Analysis

	6 Conclusion and Proposed Timeline
	References

